

Lecture Notes in Artificial Intelligence 4998
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Jaume Bacardit
Ester Bernadó-Mansilla
Martin V. Butz Tim Kovacs
Xavier Llorà Keiki Takadama (Eds.)

Learning
Classifier Systems

10th International Workshop, IWLCS 2006
Seattle, MA, USA, July 8, 2006
and 11th International Workshop, IWLCS 2007
London, UK, July 8, 2007
Revised Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Jaume Bacardit
University of Nottingham, UK
E-mail: jaume.bacardit@nottingham.ac.uk

Ester Bernadó-Mansilla
Universitat Ramon Llull, 08022 Barcelona, Spain
E-mail: esterb@salle.url.edu

Martin V. Butz
University of Würzburg, 97070 Würzburg, Germany
E-mail: butz@psychologie.uni-wuerzburg.de

Tim Kovacs
University of Bristol, Bristol BS8 1UB, UK
E-mail: kovacs@cs.bris.ac.uk

Xavier Llorà
University of Illinois at Urbana-Champaign, Urbana, IL 61801-2996, USA
E-mail: xllora@uiuc.edu

Keiki Takadama
Tokyo Institute of Technology, Tokyo, 152-8550, Japan
E-mail: keiki@hc.uec.ac.jp

Library of Congress Control Number: 2008938336

CR Subject Classification (1998): I.2, H.3, D.2.4, D.2.8, G.1.6

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-88137-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88137-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12539123 06/3180 5 4 3 2 1 0

Preface

This volume includes extended and revised versions of the papers presented
at the 9th and 10th International Workshops on Learning Classifier Systems
(IWLCS 2006 and IWLCS 2007). Both workshops were held in association with
the Genetic and Evolutionary Computation Conference (GECCO). IWLCS 2006
was held on July 8th, 2006, in Seattle, USA, during GECCO 2006. IWLCS 2007
was held on July 8th, 2007, in London, UK, during GECCO 2007.

The IWLCS is the annual meeting of researchers wishing to discuss recent
developments in learning classifier systems (LCS). At the last IWLCS, the LCS
researchers commemorated the 10th anniversary of the workshop and acknowl-
edged the contribution of Stewart Wilson to the field. Following his proposal of
the XCS classifier system in 1995, research on LCS was reactivated leading to
significant contributions and promising perspectives. The annual IWLCS work-
shops are the proof of this fruitful research. We include an invited paper from
Stewart Wilson. We greatly appreciate his contribution to the volume.

The contents of this book are as follows. First, Bacardit, Bernadó-Mansilla
and Butz review LCS research over the past ten years and point out new chal-
lenges and open issues in the LCS field. Next, papers investigating knowledge
representations are presented. Lanzi et al. analyze the evolution of XCS with
symbolic representations using a novel method that identifies useful substruc-
tures and tracks the emergence of optimal solutions. Ioannides and Browne
investigate the scaling of LCSs using ternary and symbolic representations.
Orriols-Puig et al. introduce a fuzzy representation to UCS classifier system and
show promising results regarding interpretability and accuracy. The next group
of papers provides insight into the system’s functioning. Drugowitsch and Barry
propose a methodology for designing LCSs based on first identifying the model
underlying a set of classifiers and then training the model with standard learn-
ers. Orriols-Puig and Bernadó-Mansilla revisit the UCS classifier system and
compare it with XCS in several critical scenarios. Next, several papers investi-
gating LCS mechanisms are provided. Loiacono et al. analyze current methods
for error estimate in XCSF and propose the Bayes linear analysis to improve
this estimate. Smith and Jiang introduce a new LCS architecture with mutual
information-based fitness and compare the approach with XCS. Bull designs
a model of a simple anticipatory LCS with payoff-based fitness to understand
the main learning principles. Mellor describes a learning classifier system that
evolves rules expressed as definite clauses over first-order logic and applies this to
relational reinforcement learning tasks. Llorà et al. study a Pittsburgh LCS that
identifies linkages among the attributes of the problem. The following section
of papers explores future directions for LCSs. Wilson investigates the represen-
tation of classifier conditions based on gene-expression programming in order
to get a better fit with regard to environmental regularities than is the case

VI Preface

with traditional representations. Lanzi et al. design an ensemble XCSF which
contains classifiers with different types of prediction functions in the same popu-
lation, allowing thus the evolution to choose the best representation according to
the underlying geometry of the problem. Next, Orriols-Puig et al. design a learn-
ing methodology that first infers learning interactions among features and then
builds a surrogate model that is used for classification. Bacardit and Krasnogor
investigate ensemble techniques for Pittsburgh LCSs and test the approach on
a bioinformatics domain. Finally, applications of LCSs are presented. Kurahashi
and Terano apply an LCS based on the minimum description length principle
and Tabu search to extract plant operation knowledge from time series data.
Moioli et al. focus on the application of LCSs to reactive and non-reactive tasks,
and compare the performance of a strength-based and an accuracy-based LCS.

This book is the continuation of the five volumes from the previous work-
shops, published by Springer-Verlag as LNAI 1813, LNAI 1996, LNAI 2321,
LNAI 2661, and LNCS 4399. We hope it will be a useful support for researchers
interested in learning classifier systems and will provide insights into the most
relevant topics and the most interesting open issues. We are grateful to all au-
thors that contributed to this volume as well as to the referees that helped
improve the quality of these papers.

May 2008 Jaume Bacardit
Ester Bernadó-Mansilla

Martin V. Butz
Tim Kovacs
Xavier Llorà

Keiki Takadama

Organization

The 9th International Workshop on Learning Classifier Systems (IWLCS 2006)
was held on July 8th, 2006, in Seattle, USA, in association with the Genetic and
Evolutionary Computation COnference (GECCO) 2006. The 10th International
Workshop on Learning Classifier Systems (IWLCS 2007) was held on July 8th,
2007, in London, UK, during GECCO 2007.

Organizing Committee

IWLCS 2006
Tim Kovacs University of Bristol, UK
Xavier Llorà University of Illinois at Urbana-Champaign, USA
Keiki Takadama Tokyo Institute of Technology, Japan

IWLCS 2007
Jaume Bacardit University of Nottingham, UK
Ester Bernadó-Mansilla Universitat Ramon Llull, Spain
Martin V. Butz Universität Würzburg, Germany

Program Committee

Jaume Bacardit University of Nottingham, UK
Anthony Bagnall University of East Anglia, UK
Alwyn Barry University of Bath, UK
Jeffrey K. Basset George Mason University, USA
Ester Bernadó-Mansilla Universitat Ramon Llull, Spain
Andrea Bonarini Politecnico di Milano, Italy
Lashon B. Booker The Mitre Corporation, USA
Will Browne University of Reading, UK
Larry Bull University of West England, UK
Martin Butz Universität Würzburg, Germany
Brian Carse University of West England, UK
Lawrence D. Davis NuTech Solutions, USA
Jan Drugowitsch University of Bath, UK
Robert Egginton University of Bristol, UK
Pierre Gérard University of Paris, France
Ali Hamzeh Iran University of Science and Technology, Iran
Francisco Herrera Universidad de Granada, Spain
John H. Holmes University of Pennsylvania, USA
Abdollah Homaifar North Carolina A&T State University, USA
Tim Kovacs University of Bristol, UK

VIII Organization

Pier Luca Lanzi Politecnico di Milano, Italy
Xavier Llorà University of Illlinois at Urbana-Champaign, USA
Javier Gómez

Maŕın-Blázquez Universidad de Murcia, Spain
Drew Mellor University of Newcastle, Australia
Luis Miramontes-Hercog Intelisis, China
Jorge Muruzabal Universidad Rey Juan Carlos, Spain
Albert Orriols-Puig Universitat Ramon Llull, Spain
Sonia Schulenburg University of Edinburgh, UK
Olivier Sigaud Laboratoire d’Informatique de Paris, France
Robert E. Smith University College London, UK
Wolfgang Stolzman Daimler Chrysler, Germany
Keiki Takadama Tokyo Institute of Technology, Japan
Atsushi Wada Advanced Telecommunications Research Institute,

Japan
Tom Westerdale University of London, UK
Stewart W. Wilson Prediction Dynamics, USA
Zhanna Zatuchna University of East Anglia, UK

Table of Contents

Introduction

Learning Classifier Systems: Looking Back and Glimpsing Ahead 1
Jaume Bacardit, Ester Bernadó-Mansilla, and Martin V. Butz

Knowledge Representations

Analysis of Population Evolution in Classifier Systems Using Symbolic
Representations . 22

Pier Luca Lanzi, Stefano Rocca, Kumara Sastry, and Stefania Solari

Investigating Scaling of an Abstracted LCS Utilising Ternary and
S-Expression Alphabets . 46

Charalambos Ioannides and Will Browne

Evolving Fuzzy Rules with UCS: Preliminary Results 57
Albert Orriols-Puig, Jorge Casillas, and Ester Bernadó-Mansilla

Analysis of the System

A Principled Foundation for LCS . 77
Jan Drugowitsch and Alwyn M. Barry

Revisiting UCS: Description, Fitness Sharing, and Comparison with
XCS . 96

Albert Orriols-Puig and Ester Bernadó-Mansilla

Mechanisms

Analysis and Improvements of the Classifier Error Estimate in XCSF . . . 117
Daniele Loiacono, Jan Drugowitsch, Alwyn Barry, and
Pier Luca Lanzi

A Learning Classifier System with Mutual-Information-Based Fitness . . . 136
Robert Elliott Smith and Max Kun Jiang

On Lookahead and Latent Learning in Simple LCS 154
Larry Bull

A Learning Classifier System Approach to Relational Reinforcement
Learning . 169

Drew Mellor

X Table of Contents

Linkage Learning, Rule Representation, and the χ-Ary Extended
Compact Classifier System . 189

Xavier Llorà, Kumara Sastry, Cláudio F. Lima,
Fernando G. Lobo, and David E. Goldberg

New Directions

Classifier Conditions Using Gene Expression Programming (Invited
Paper) . 206

Stewart W. Wilson

Evolving Classifiers Ensembles with Heterogeneous Predictors 218
Pier Luca Lanzi, Daniele Loiacono, and Matteo Zanini

Substructural Surrogates for Learning Decomposable Classification
Problems . 235

Albert Orriols-Puig, Kumara Sastry, David E. Goldberg, and
Ester Bernadó-Mansilla

Empirical Evaluation of Ensemble Techniques for a Pittsburgh Learning
Classifier System . 255

Jaume Bacardit and Natalio Krasnogor

Applications

Technology Extraction of Expert Operator Skills from Process Time
Series Data . 269

Setsuya Kurahashi and Takao Terano

Analysing Learning Classifier Systems in Reactive and Non-reactive
Robotic Tasks . 286

Renan C. Moioli, Patricia A. Vargas, and Fernando J. Von Zuben

Author Index . 307

Learning Classifier Systems: Looking Back and
Glimpsing Ahead

Jaume Bacardit1, Ester Bernadó-Mansilla2, and Martin V. Butz3

1 ASAP research group, School of Computer Science, Jubilee Campus, Nottingham,
NG8 1BB and Multidisciplinary Centre for Integrative Biology, School of Biosciences,

Sutton Bonington, LE12 5RD, University of Nottingham, UK
jaume.bacardit@nottingham.ac.uk

2 Grup de Recerca en Sistemes Intel.ligents, Enginyeria i Arquitectura La Salle,
Universitat Ramon Llull, Quatre Camins 2, 08022 Barcelona, Spain

esterb@salle.url.edu
3 Department of Psychology, University of Würzburg, Röntgenring 11, 97070

Würzburg, Germany
butz@psychologie.uni-wuerzburg.de

Abstract. Over the recent years, research on Learning Classifier Sys-
tems (LCSs) got more and more pronounced and diverse. There have
been significant advances of the LCS field on various fronts includ-
ing system understanding, representations, computational models, and
successful applications. In comparison to other machine learning tech-
niques, the advantages of LCSs have become more pronounced: (1) rule-
comprehensibility and thus knowledge extraction is straightforward; (2)
online learning is possible; (3) local minima are avoided due to the evo-
lutionary learning component; (4) distributed solution representations
evolve; or (5) larger problem domains can be handled. After the tenth
edition of the International Workshop on LCSs, more than ever before,
we are looking towards an exciting future. More diverse and challenging
applications, efficiency enhancements, studies of dynamical systems, and
applications to cognitive control approaches appear imminent. The aim
of this paper is to provide a look back at the LCS field, whereby we place
our emphasis on the recent advances. Moreover, we take a glimpse ahead
by discussing future challenges and opportunities for successful system
applications in various domains.

1 Introduction

Learning Classifier Systems (LCSs) are robust machine learning techniques that
can be applied to classification tasks [17,6], large-scale data mining problems
[81,11], or robot control and cognitive system applications [33,62], among others.
The well-established field has its origin in John Holland’s work on cognitive
systems [59,56], initiated with his seminal book on adaption in natural and
artificial systems [58]. Time has seen research on several distinct approaches and
paradigms. Two classic examples of these are the Michigan approach [57] versus
the Pittsburgh approach [104] and also the strength-based Michigan LCSs [57]
versus the more recent accuracy-based Michigan LCS [112].

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 1–21, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 J. Bacardit, E. Bernadó-Mansilla, and M.V. Butz

Recent years have seen an explosion in quantity and diversity of LCS research.
Advances have been made on various frontiers including different condition rep-
resentations beyond the traditional binary/ternary rules (rules for continuous at-
tributes [81], hyperellipsoids [28], representations based on S-expressions [79,21],
etc.), other problem classes (function approximation tasks [77,87], clustering
[110]), smarter exploration mechanisms [36,85,10], and various theoretical ad-
vances [34,26,92,95].

The main meeting point of the LCS community, the International Workshop
on Learning Classifier Systems, celebrated its 10th edition in 2007. This gives
us the opportunity to take a look at the evolution of the whole LCS field from
a wider perspective. In this chapter, we give an overview of the main areas of
LCS research in recent years and which challenges and opportunities are laying
ahead. In short, the aim of this chapter is to provide a summary of past, present,
and future LCS research.

The chapter is structured as follows. Section 2 concentrates on the past by
describing briefly the origins of LCS research, its motivation, development, and
first successes. Section 3 surveys present LCS research. It touches on many recent
advances, which we categorize along the lines of representation, learning, theory,
and application. Section 4 discusses future challenges and opportunities. Based
on the state-of-the-art survey, we outline various future research and application
directions, which may exploit the LCS strengths and improve their weaknesses.
Section 5 summarizes and concludes.

2 LCSs: Types and Approaches

John Holland, the father of LCSs, took a biological point of view and con-
sequently introduced the LCS framework as a cognitive systems framework
[59,56,57]. Inspired by principles from biology, psychology, production systems,
and Darwinian evolution, he designed CSs as systems that evolve production
rules in order to convert given input sensations, as well as potentially internal
state representations, into useful motor commands. Rules were evaluated by ba-
sic reinforcement learning mechanisms—the infamous bucket-brigade algorithm
[60]—and rule structure evolved by means of genetic alterations and fitness-based
selection.

Due to the availability of a recent excellent LCS survey [73], rather than focus-
ing on a historic overview on LCS research, this section gives a short introduction
to the basic LCS architecture and the fundamental differences between Pittsburgh
and Michigan-style LCSs. It is hoped that this section (1) forms the basis for the
rest of this chapter and (2) gives a general introduction to what LCSs are.

2.1 Basic LCS Components

It might be debatable which systems may be considered LCSs. However, in order
to get a grasp onto the system functionality, it seems important to identify the
minimal components that are usually part of an LCS:

Learning Classifier Systems: Looking Back and Glimpsing Ahead 3

– A set of classifiers, that is, a set of rule-like structures, where rules usually
have a condition-prediction form. This set, as it will be seen later when we
describe the two main LCS paradigms, is often identified as a population,
where each classifier in the set has its own individual identity, while other
times classifiers are just part of a whole and studying them separately does
not always provide good insight. For simplicity in the next paragraphs we
will talk about populations, even if it is not entirely appropriate.

– Classifier/population evolution mechanisms, potentially enhanced with
heuristics, which are designed to improve rule structures over time.

– Classifier/population evaluation mechanisms, which identify the quality of a
rule or population of rules.

These components are specified in a rather general sense. However, the three
components immediately imply some of the most important considerations in
LCS research and application. First, the population of classifiers implies that
LCSs are meant to evolve distributed problem solutions, in which individual
classifiers specify suitable sub-solutions. Thus, LCS somewhat follow a mixture of
experts approach. The overall solution to the problem is thus not represented in
an individual rule but in the concert of rules represented in a classifier population.

Second, since rule structures are evolved by evolutionary-inspired, distributed
learning techniques and this evolutionary process depends on fitness estimates,
which are derived by the employed evaluation mechanism, LCSs are highly in-
teractive learning mechanisms. Thus, the interaction—or the race—between suf-
ficiently accurate evaluations and sufficiently focused evolution needs to be bal-
anced to ensure successful learning. The various LCS systems accomplish this in
some way or the other, as will be seen below.

Finally, due to the evolutionary-based structural search, LCSs usually work
exceptionally competitive in problems in which either the signal for rule struc-
tures cannot be determined directly from the feedback signal, or, if a suitable
feedback signal is available, directed error-based structural learners tend to get
stuck in local minima. Thus, due to the interactive evaluation-evolution ap-
proach, LCSs do process feedback signals but they do not convert this signal
directly into structural search biases, but use evolutionary mechanisms to in-
duce a more thorough search that is only indirectly dependent on the feedback.
Thus, LCSs are more likely to find globally-optimal solutions in particularly
challenging problems, which require distributed problem solutions but in which
heuristic search mechanisms tend to prematurely converge to local optima.

2.2 Michigan vs. Pittsburgh LCSs

One of the most fundamental distinction in LCS research is that of Michigan-
style vs. Pittsburgh-style LCSs. Holland proposed the Michigan-style ones [57],
while De Jong and his students [104,105] proposed the Pittsburgh-style LCS
approach. A great historical description of the development of these two LCS
paradigms is available elsewhere [40]. Several main distinctions between the two
approaches can be drawn:

4 J. Bacardit, E. Bernadó-Mansilla, and M.V. Butz

– Individuals structure
– Problem solution structure
– Individuals competition/cooperation
– Online vs. offline learning

The first most fundamental distinction is the structure of an individual. While
in Michigan systems each individual is a classifier, in Pittsburgh systems each
individual is a set of classifiers. The other distinctions are a consequence of
the first one: in Pittsburgh systems the solution to the problem is the best
individual of the population. The individuals in the population compete to solve
the problem and for reproductive opportunities, while in Michigan systems the
solution is the population, that is, the classifiers in the population cooperate
to solve the problem, while they compete for reproductive opportunities. The
last distinction is just a consequence of the previous distinctions, and will be
discussed later in this section. Figure 1 illustrates the main difference between
the two systems.

Due to the classifier-based competition in Michigan-style LCSs, the pop-
ulation is usually continuously evaluated and evolved by steady-state GA
techniques. Pitt-style systems, on the other hand, require longer evaluation pe-
riods until the next generation of populations can evolve, since the fitness of the
whole population rather than of individual classifiers needs to be assessed. Thus,
Michigan-style systems are typically applied in interactive online learning prob-
lems while Pitt-style systems are rather suitable for offline learning problems.
Nonetheless, either system has also been applied to the other problem type.

Another consequence of the rule-competition vs. population-competition dif-
ference is the typical form of the final solution. While Michigan-style systems
typically evolve highly distributed problem solutions involving a rather large
number of rules (typically hundreds if not more), Pitt-style systems usually
evolve more compact populations involving only few rules in a population (less
than a hundred). As a consequence, it can be expected that Pitt-style systems are
more suitable when compact solutions with few rules are expected to solve the

Fig. 1. While Michigan-style LCSs evolve one population of rules, in which the rules
compete for offspring generation, Pittsburgh-style LCSs evaluate and evolve multiple
populations, which compete with each other for reproductions

Learning Classifier Systems: Looking Back and Glimpsing Ahead 5

problem at hand. Michigan-style systems, on the other hand, are better suited
if more distributed solutions are searched for.

3 Recent Advances in LCSs

This section contains an overview of the recent research in the LCS field. Our
aim is to provide a spotlight of the different directions towards which the field is
advancing. Thus, although our intention is to provide a good description of the
overall advances of the field, for a more detailed survey including further historic
remarks, the interested reader is referred to the mentioned LCS survey [73].

Classical Michigan/Pittsburgh LCS systems were rule systems with ternary
condition structures, discrete actions, and real-valued predictions that used some
form of evolutionary component to learn. Present LCS research has thoroughly
analyzed these representations and mechanisms in several, often facet-wise, the-
oretical models. Moreover, it has gone beyond these simple representations and
is currently investigating the usage of advanced evaluation and evolution mecha-
nisms, advanced representations, and the application to more diverse, real-world
problem domains.

This section shows that the current LCS research is very diverse, tackling
many different—albeit partially converging—frontiers towards which this field is
advancing. We organize this section in ten subsections in which these advances
can be placed. Starting from the representation of conditions, actions, and pre-
dictions, we move on to classifier competition, the evolutionary component, and
theoretic considerations and continue with with issues on solution interpretabil-
ity and efficiency enhancement techniques. We conclude this section with a short
survey on LCS application domains and current cognitive system approaches.

3.1 Condition Structure

In this category we place the advances in the condition part of the knowledge
representations, that is, the way in which the feature space is partitioned when
a problem is solved. Traditionally, LCSs have used knowledge representations
based on rules for binary/nominal attributes. The ternary representation of
Michigan LCSs [50,112] or the representation of the GABIL Pittsburgh LCSs
[41] are two examples of classic knowledge representations.

Over time, other kinds of knowledge representations were proposed. The main
bulk of them were intended to deal with continuous attributes, something that
previous representations could not do. The earliest approach for continuous at-
tributes [116] was still a rule representation, but this time using hyperrectangles
as the conditions for the classifiers. This approach has been the most popular one
in recent years [107,3,83,29,14]. Other alternatives are using rule representations
based on fuzzy logic [39], decision trees and synthetic instances used as the core
of a nearest neighbor classifier [82], or hyperellipsoid conditions [28,35].

Another kind of representation advance is the use of symbolic expressions
to define classifier conditions [78,2,79,21]. This kind of representation may be
the most flexible one, in the sense that it can specify the most diverse types of

6 J. Bacardit, E. Bernadó-Mansilla, and M.V. Butz

problem subspaces. However, due this high diversity, it can also be considered
one of the hardest to learn suitable condition structures reliably.

3.2 Action Structures

While conditions partition the problem space, actions, or classifications, propose
a solution to the specified problem subspace. We analyze here the different alter-
natives regarding the action part of the classifiers. Traditionally, the responses
of LCS systems were static. That is, in a classification problem the possible
responses were the different classes of the domain. Each classifier had a static
associated class. For multi-step domains, the different responses were the differ-
ent discrete movements an agent could execute.

A more recent approach goes beyond these discrete action forms by proposing
computed actions [74]. In this case, each classifier does not have an associated
class label, but a prediction function that computes an action based on the input
pattern that matched the classifier. This prediction function can be a linear
combination of the inputs with a weight vector. Thus, in LCSs with computed
actions, action choice does not only depend on the subspace in which a classifier
condition is satisfied, but also on the action computation executed within the
specified subspace.

3.3 Prediction Structure

While original LCS rules had a constant prediction, which was updated by
gradient-based techniques, different kinds of advanced prediction structures and
prediction estimation techniques have been employed recently. First of all, LCSs
can be applied to classes of problems beyond classification/multi-step domains.
The most prominent of these application domains is that of function approx-
imation/regression tasks [117,28,35,77,87] or clustering [110]. Initial function-
approximation LCS approaches tackled the regression problem as a piece-wise
linear approximation, where the problem was solved by the cooperation of mul-
tiple classifiers, each of which handled a different piece of the feature space, and
the continuous output of each classifier was computed as a linear combination of
the input and the weight vector of the classifier. Initially, this weight vector was
adjusted using a simple delta rule [117,28,35], although recently more sophisti-
cated methods such as Recursive Least Squares or Kalman Filters [77] have been
employed. More recently, LCSs have gone beyond linear approximations by also
exploring the possibility of using polynomial predictions [75], neural predictions
[88], and Support Vector Regression [87].

3.4 Classifier Competition

Given a specific input problem instance, individual rules usually propose one ac-
tion and prediction. However, since usually many classifier match a certain input,
another concern is the selection of the actual action and prediction amongst all
the matching classifiers available. That is, given a set of classifiers that match an
input pattern, the LCS should choose the classifier/s that produce the response.
In the Pittsburgh approach, the traditional solution is to organize the classifiers

Learning Classifier Systems: Looking Back and Glimpsing Ahead 7

in a decision list [101] (an ordered set of rules), and the first classifier in the list
that matches an input pattern is the one used to predict its output. In the Michi-
gan approach, the prediction is usually made cooperatively by all the classifiers
of the match or action set. Some recent advances in this topic are the usage of
explicit default rules at the end of the decision list of Pittsburgh LCSs [8] or the
use of better accuracy estimates of classifiers [89,103] and principled classifier
voting [19] for Michigan LCSs. Also the usage of ensemble learning methods is
worth mentioning, which integrates the collective prediction of a set of models
(populations of classifiers in a Michigan LCS [69] or sets of rules extracted from
multiple runs of a Pittsburgh LCS [9]) using some principled fashion.

3.5 Rule Structure Evolution Mechanisms

Evolutionary mechanisms explore the space of classifier structures. In simple
LCSs, this has been done by simple mutation techniques (random changes in
the ternary condition representation) and simple crossover techniques (typically
applying two-point crossover). Some of the recent advances, however, noted that
such a simple crossover application may be disruptive, consequently applying
Estimation of Distribution Algorithms (EDAs) [80], which generate a model of
the problem structure and then explore the search space based on this model.
There are studies of the application of EDAs for both the Michigan [36] and
Pittsburgh [85] approaches. An alternative to EDAs in the context of smarter
exploration mechanisms is the integration of local search techniques within an
evolutionary algorithm, generally known as Memetic Algorithms [68], with ex-
amples for both Michigan [120] and Pittsburgh [10] LCSs. Also, mutation rates
have been adjusted using self-adaptive mutation [22,25]. In this case, the search
operators do not improve themselves but rather are evolved to become more
efficient for the current exploration mechanism.

3.6 Theory and Robustness

There have been various theoretical advancements in LCSs, which gives more
detailed explanations of how, why, and when an LCS works. The theoretical
advancements may be separated in the analysis of the evolutionary component
and the evaluation component of the LCS system.

For the evaluation component, Wilson [115,112] has shown that his ZCS and
XCS systems essentially approximate the Q-value function. Drugowitsch and
Barry [43] provide an excellent mathematical foundation of the rule evaluation
mechanisms in LCSs and particularly their relation to standard machine learn-
ing and adaptive filtering techniques, including Kalman filtering. Generally, rule
evaluation can be considered a gradient-based, steepest-decent approximation
that should adapt the prediction estimation value of a classifier maximally effi-
ciently. Given good approximations, rule evolution can be applied successfully.

On the rule evolution side, the seminal paper on a Theory of Generalization
and Learning in XCS [34] has shown how the evolutionary component in LCSs
picks-up signals of more suitable classifier structures and consequently evolves

8 J. Bacardit, E. Bernadó-Mansilla, and M.V. Butz

those. Due to the strong importance of proper selection pressures, various meth-
ods have been investigated, including proportionate selection with different scal-
ing factors [66] as well as tournament selection methods [37]. Selection pressure
was explicitly modeled in [96], where tournament selection was found to be more
robust than roulette wheel selection.

Meanwhile, generalization applies due to a preference of reproducing more
general classifiers. Moreover, this paper has shown that a general basic sup-
port of structure needs to be available to ensure successful classifier evolution.
[30] has further derived a minimal bound for the population size necessary to
evolve boundedly complex classifier structures. Finally, [32] has derived another
minimal population size bound that is necessary to ensure complete solution sus-
tenance. All these bounds were used to confirm the PAC-learning capabilities of
the XCS classifier system in k-DNF binary problem domains [26]. These theoret-
ical advancements still await their extension into the real-valued realm, in which
a volume-based classifier condition representation may lead to similar results.

Moreover, it has been shown that class imbalances pose some difficulties to
LCS learners. Generally, learners are usually biased toward the majority class
when they are exposed to domains with high class imbalances. LCSs also suffer
from these difficulties and can potentially forget infrequent patterns during the
incremental learning progress. The conditions necessary for successful learning
under such conditions have been theoretically investigated in [92,95]. In these
studies, the conditions for the discovery and maintenance of minority-class niches
are identified. Also a number of resampling approaches have been experimentally
investigated to favor the discovery of infrequent patterns [91,93].

3.7 Interpretability and Compaction

While many efforts have relied on improving accuracy of LCSs, interpretabil-
ity has also been identified as a relevant issue to get enhanced applicability of
LCSs. This is an issue that has bothered both Michigan and Pittsburgh re-
searchers. However, the approaches taken have been different. Pittsburgh LCSs
usually include mechanisms for evolving compact rule sets in the search pro-
cess, for example, by means of using minimum description length principles [7]
or multiobjective approaches searching both for accurate and minimal rule sets
[13,49,63]. On the contrary, Michigan LCSs cannot include such a direct pref-
erence for compact rule sets in the evolutionary search and thus, they usually
result in large rule sets. One of the reasons is that LCSs are always performing an
exploration process, so that once the evolution is stopped, the rule set contains
many inexperienced rules. In such cases, Kovacs [67] suggested the use of a con-
densation phase, where the GA was disabled to allow the formation of optimal
rule sets. On the other hand, in domains with continuous attributes where LCSs
use non-discretized representations, LCSs tend to evolve large numbers of rules
that consist of many partially overlapping rules that cannot be subsumed during
the exploration process. In these cases, compaction algorithms that prune excess
rules with minimum loss of accuracy are proposed. The use of compaction algo-
rithms was first proposed by Wilson for XCS with hyperrectangle representation
[118] and later studied in [42,97,45,121].

Learning Classifier Systems: Looking Back and Glimpsing Ahead 9

Fuzzy representations have been proposed as an alternative way for getting
highly interpretable rule sets. There are a number of approaches using fuzzy
representations in Pittsburgh and hybrid LCSs [109,64]. In Michigan LCSs, there
were early approaches such as [111,100,18]. Recently, fuzzy representations have
been introduced in XCS [38] and later in UCS [94].

3.8 Efficiency Enhancement Techniques

Regarding the methods that alleviate the run-time of LCSs, many alternatives
also exist. Some methods apply various kinds of windowing techniques [4] that
allow the LCS to use only a subset of the training examples for fitness compu-
tation. Various policies exist to choose the training subset and the frequency in
which this subset is changed. In [44] a taxonomy of such methods is given.

Parallel implementations of various LCS paradigms exist [82,23,81]. The
GALE system [82] is an especially interesting example due to its fine-grained
parallel design, where the topology and communications of the parallel model
are a direct consequence of the population topology and distribution.

A widely explored efficiency enhancement approach in evolutionary compu-
tation is the use of fitness surrogates, that is, cheap estimators of the fitness
function [65]. This approach has been recently explored within the LCS field
[98,86] by constructing fitness surrogates based on an estimated model of the
problem structure. Finally, there has also been some work in speeding up the
matching operations of classifier conditions for both nominal and continuous rep-
resentations [84,81] based on the usage of vectorial instructions (SSE, Altivec,
etc.) available on modern day microprocessors.

3.9 Applications

With regard to applications, a clear aspect where LCSs have shown to perform
competently in comparison to a broad range of machine learning techniques
is in data mining tasks [17,6]. Until recently, most of the available datasets
were of relatively small size. Now, and mainly thanks to the usage of efficiency
enhancement techniques explained in the previous subsection, LCSs have also
been applied to much larger real datasets in bioinformatics [108] or biomedical
[81] domains, containing hundreds of thousands of instances.

Other real world examples of application of LCSs are the automatic learning
of fighter aircraft maneuvers [102], LCSs applied to medical domains [61] or
to control problems in a steel hot strip mill [20]. There have also been some
studies of the application of LCSs to stream data mining [1,54], where there
is a continuous flow of examples arriving at a very fast rate, which requires
that LCS learn and produce a prediction in very short time. An overview of
recent applications including an extensive bibliography of LCS applications can
be found elsewhere [24].

3.10 Cognitive Systems

Since Holland’s introduction [59], LCSs have also played an important role in
adaptive behavior research and the animat problem—research on the develop-

10 J. Bacardit, E. Bernadó-Mansilla, and M.V. Butz

ment of artificial animals and cognitive robots [113,114]. Moreover, they have
shown to be strongly related to reinforcement learning and particular to the
problem of online generalization in Markov decision processes [71,115,112]. Re-
cently, various results have shown competitive performance of XCS on bench-
mark reinforcement learning problems, such as the mountain car problem [76],
and various studies have shown that XCS can maintain long reward chains and
is able to generalize very well over large problem spaces [31,29]. Thus, LCSs can
be considered partially superior alternatives to standard reinforcement learning
algorithms and related machine learning approaches. They have the particular
advantage that the balance between GA and reward propagation and approxi-
mation can be maintained in large problem spaces, consequently learning stable
payoff distributions with a highly generalized set of accurate classifiers.

There have also been advances in Partially observable Markov decision pro-
cesses (POMDP). XCS was enhanced with internal registers and has been shown
to consequently evolve emergent internal representations that were able to dis-
tinguish aliasing states in the environment [72]. However, the scalability of the
taken approach has not been shown and other researchers have tackled the prob-
lem with various other LCS approaches, such as Pitt-style policy learners [70]
or the AgentP classifier framework, which uses learning heuristics to overcome
the POMDP problem [122]. Despite all these efforts, the POMDP problem is far
from being solved also in the LCSs realm.

AgentP actually belongs to the class of anticipatory learning classifier systems
(ALCS), which form explicit predictions about sensory consequences of actions.
These systems contain classifiers that encode condition-action-next state percep-
tion triples. Various forms of ALCSs exist including the original ACS [106], the
enhanced, online generalizing ACS2 [27], the mentioned AgentP, YCS [47], and
MACS [46]. In comparison with policy learners, the systems have the advantage
that they learn a predictive model of the environment so that they are able
to flexibly adjust their actual behavior by simulating possible future behaviors
internally. This can be most effectively done with dynamic programming princi-
ples [46] but also partial updates have been investigated in accordance with the
Dyna architecture in reinforcement learning [27]. For future research, it seems
particularly appealing to extend these systems into real-world domains and to
modularize them to be able to efficiently represent distinct but related problem
spaces of the environment.

4 Challenges and Opportunities

The near future points to several research challenges and various application
opportunities, some of which are also shared with the machine learning commu-
nity as a whole. Of common interest are issues such as applying learners beyond
the traditional classification problems, extracting information from real-world
datasets, system scalability, and rule selection. Besides the machine learning re-
lation, though, advanced, modular system designs and resulting applications to
complex robotics and cognitive systems tasks, amongst other domains, appear

Learning Classifier Systems: Looking Back and Glimpsing Ahead 11

imminent. In the following, we list the, in our opinion, most promising research
directions, including advanced system designs and various application oppor-
tunities. At the end of the section, we emphasize the general need in machine
learning for system cookbooks, that is, principled methodologies for system ap-
plications. For LCSs in particular, the practitioner needs to be further guided to
be able (1) to choose the best LCS for the problem at hand and (2) to suitably
adjust the chosen LCS to optimally prepare it for the application challenge.

4.1 Problem Structure and LCS Modules

A current opportunity for LCS systems is to exploit their easy knowledge extrac-
tion possibilities to extract useful patterns for the integration of unsupervised
learning and semi-supervised learning mechanisms. Some approaches have al-
ready been proposed such as those building clusters by taking advantage of the
generalization capabilities of classifiers [110]. The reverse question needs to be
further investigated, though, that is, if the clusters can again be used for the so-
lution of classification problems. The XCS system essentially combines clustering
and classification and clusters for the generation of accurate classifications.

Semi-supervised data mining approaches, where not all instances are labeled,
could benefit from combined clustering plus potential classification approaches.
Other frameworks, such as unsupervised learning, may also be exploited by LCSs.
Mining association rules can be addressed with LCSs that are searching for
the most frequent patterns among the attributes. In these cases, generalization
is a key issue, and LCSs are ready to conquer large problem spaces with the
appropriate generalization mechanisms. Thus, LCSs are ready to be applied to
domains in which partially pure clustering and partially problem space clustering
for accurate classifications or predictions are necessary.

So far most LCSs have been flat, processing input and converting that input
into a classification, behavior, or prediction. The great problem space struc-
turing capabilities, however, suggest the generation of more modularized and
hierarchical LCSs. That is, since LCSs have been shown to be able to auto-
matically identify building-block structures in problem domains [36], it appears
imminent that modular LCS systems make these structures explicit, abstract
them, and use the abstracted concepts for further processing. A first approach
in this direction can be found in this book [99]. Due to the LCS principle of
clustering-for-prediction, however, more modular and hierarchical LCSs, which
may process subsets of input dimensions, abstract the information, and merge
it in higher level structures seem possible. Once such system architectures will
be successfully designed, a whole new dimension of LCS systems and successful
LCS applications will be at hand.

While such modular, hierarchical LCS systems may be applied to various
problem domains, the application in the cognitive systems realm appears most
appealing. Over the recent years, research in cognitive neuroscience, psychology,
and the mind in general has emphasized two very important aspects of brain
structure and functionality: interactive modularity and sensorimotor codes
[48,52,53,90,119]. That is, the brain structures sensory and motor information

12 J. Bacardit, E. Bernadó-Mansilla, and M.V. Butz

in various modules, whereby the purpose of these modules is (1) to satisfy
motivational modules and (2) to serve control modules for successful behavioral
executions. Thus, many sensorimotor codes are found in the brain, which encode
the dependence of sensory information on motor commands in various forms
and multimodal modules. LCSs can structure sensory information for successful
prediction and motor control. Thus, they have the potential to directly develop
sensorimotor codes. Once advanced system modularity and further interactivity
of LCS systems is realized, then also the interactive modularity of sensorimotor
codes may be mimicked. Thus, the design of advanced, cognitive LCSs appears
to be within our grasp.

4.2 LCS Cookbook

Many different learning algorithms have been proposed and evaluated experi-
mentally in a number of domains. No difference in LCSs: Various LCSs have
been proposed and applied to various problem domains—each of which with
some claimed superiorities shown by some evaluations in suitable problems or
problem classes. With such a variety of available methods, the practitioner finds
it difficult to choose a learner for a given application. Which LCS is better
suited for a given problem? Which are the conditions of applicability of an LCS?
Although we wish to be able to give exact answers to these questions, it is cur-
rently still a big challenge to give precise system design recommendations given
a particular problem. In fact, often the trouble already starts at the problem
definition itself and particularly the to-be expected problem structures.

Thus, a big challenge is the development of further theoretical understanding
of which types of problems exist and which kind of LCS, or learning method in
general, is most suited to solve each type of problem. Goldberg has approached
this challenge with the definition of boundedly difficult problems in various opti-
mization problem domains [51]. The theoretical performance analyses of the XCS
classifier system have moved along a similar vein and identified various problem
properties that influence problem difficulty [29]. Another approach works on the
categorization of problems by means of geometrical descriptors, such as the sepa-
rability of classes or the discriminant power of attributes [15,55,12]. These works
have identified some features that are critical to the success of learners and can act
as predictors of the learners’ performance [16]. However, there is much more work
needed to further understand the intrinsic characteristics of data and find the key
properties relevant for the identification of the most potent learning algorithm.

Another dimension of problem complexity, somewhat easier to describe but
nonetheless equally difficult for LCS systems, is the size of the problem. That
is, how can we make sure that LCS performance is not degraded when tackling
problems of larger sizes. Scalability analysis of LCSs in such domains is still at
its beginning, but the theoretical knowledge on different facets of the problem
is available [5,29,95]. Thus, compound approaches that tackle all the problem
facets in real-world data mining applications are pending.

Further extensions of such investigations in the LCS realm appear in close
reach, including further analyses of adversarial LCS problems and further studies

Learning Classifier Systems: Looking Back and Glimpsing Ahead 13

of which features are critical for LCS success. These studies are expected to close
the gap between LCSs and other machine learning methods. Moreover, they are
expected to lead towards more precise knowledge of the relative strengths and
weaknesses of the available learning systems and, in particular, the domains
of competence of different LCS learners. On this road, we expect that LCSs
and evolutionary approaches for machine learning will be progressively better
known and will become accepted in the machine learning community as a whole.
Meanwhile, the particular strengths of LCSs will become appreciated, such as
learning robustness, versatility due to the availability of several representations
and balanced learning influences, and the explanatory power of LCSs.

4.3 Data Mining

Clearly the available applications in the data mining domain have not exploited
the full potential of LCSs. Knowledge extraction and exploitation are still at the
beginning. Moreover, the systems’ flexibility has not been exploited to its fullest.

In particular, it appears that there is still a lot of room for applying LCSs
in real-world domains, far beyond studies that are based on the known toy prob-
lems from the UCI repository. Although the problems from the UCI repository
have been labeled “real-world problems”, and although they technically mostly
are, they do not fully represent the difficulties of real-world data mining ap-
plications. LCSs may be applied to mine interesting patterns from very large
datasets, containing hundreds of thousands of registers and a great number of
attributes, plus all associated complexities altogether (including high instance
imbalances, noise, missing information, partially labeled instances, etc).

Searching patterns through datasets structured in some manner, different from
the usual plain file, can also be a difficult challenge to any learning scheme. Data
may be presented in complex structures. While the traditional form consists of
a number of instances, each characterized by a fixed number of attributes with
associated class, data is now often presented in more intricate ways. Medical
records contain diverse data sets, which were collected from many sources: some
may have a variable number of medical tests associated, others may contain
results from related tests performed over a variable number of individuals of the
same family, etc. Thus, incomplete information, multiple-instance learning, and
varied types of data are some of the difficulties that LCSs will need to face.

As we have mentioned in section 3.9, there are some initial examples of LCS
application to large-scale real datasets. These examples have shown that, indeed,
LCS can be applied successfully to these kind of domains, providing accurate
solutions and high explanatory power due to its rule-based representations.
However, one question remains unanswered in a broad and systematic sense:
how can we guarantee that LCSs are well adjusted when applied to data mining
domains? The answer is not simple, but we think that the challenges that we
presented in the above subsections are important steps towards this answer,
specially the cookbook part. When we are able to (1) determine which LCS
modules are best suited for the domain at hand, thanks to all the problem
complexity metrics, and (2) know how to parametrize our LCSs appropriately,

14 J. Bacardit, E. Bernadó-Mansilla, and M.V. Butz

by using principled policies derived from the theoretical analysis made from
each LCS component, then we will have surpassed an important milestone
towards successful advanced LCS applications; and even more importantly,
the community will have a sound instruction set of how to get the best of the
available LCS technology. While the necessary bits and pieces are available, the
whole set is currently still being put together.

5 Conclusions

LCSs have come a long way. The first LCSs were mainly biologically inspired
and designed as admittedly simple but flexible adaptive systems. Modern LCS
applications focused mainly on the data mining challenge. Over the last decade
or so, LCS research has progressed towards a solid system understanding, it has
created a theoretical foundation of LCS learning concepts, and it has shown LCS
competitiveness in various machine learning challenges.

While there are still challenges to be solved, we believe that these challenges
are actual opportunities for future successful research efforts and even poten-
tially groundbreaking system applications. LCSs are ready to solve complex
real-world problems in the data mining domain but also in the cognitive systems
domain and others. The rest of this book provides a great overview of current
research advances and application approaches. Various pointers to further recent
literature are available throughout the book. Thus, we hope that these IWLCS
post-workshop proceedings once again give a useful overview of current system
progresses and encourage further effort along the plotted research directions.
Only future research can ultimately verify the apparent opportunities.

Acknowledgments. J.Bacardit acknowledges the support of the UK En-
gineering and Physical Sciences Research Council (EPSRC) under grant
GR/T07534/01. E.Bernadó-Mansilla acknowledges the support of Enginyeria
i Arquitectura La Salle, Universitat Ramon Llull, and the Ministerio de Ed-
ucación y Ciencia under grant TIN2005-08386-C05-04. M.Butz acknowledges
funding from the Emmy Noether program of the German research foundation
(grant BU1335/3-1) and likes to thank his colleagues at the department of psy-
chology and the COBOSLAB team.

References

1. Abbass, H.A., Bacardit, J., Butz, M.V., Llora, X.: Online adaption in learning
classifier systems: Stream data mining. Technical Report 2004031, Illinois Genetic
Algorithms Lab, University of Illinois at Urbana-Champaign (2004)

2. Ahluwalia, M., Bull, L.: A genetic programming-based classifier system. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, vol. 1, pp.
11–18. Morgan Kaufmann, San Francisco (1999)

3. Bacardit, J., Garrell, J.M.: Analysis and improvements of the adaptive discretiza-
tion intervals knowledge representation. In: Deb, K., et al. (eds.) GECCO 2004.
LNCS, vol. 3103, pp. 726–738. Springer, Heidelberg (2004)

Learning Classifier Systems: Looking Back and Glimpsing Ahead 15

4. Bacardit, J., Goldberg, D., Butz, M., Llorà, X., Garrell, J.M.: Speeding-up pitts-
burgh learning classifier systems: Modeling time and accuracy. In: Yao, X., Burke,
E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E.,
Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp.
1021–1031. Springer, Heidelberg (2004)

5. Bacardit, J.: Pittsburgh Genetics-Based Machine Learning in the Data Mining
era: Representations, generalization, and run-time. PhD thesis, Ramon Llull Uni-
versity, Barcelona, Catalonia, Spain (2004)

6. Bacardit, J., Butz, M.V.: Data mining in learning classifier systems: Comparing
XCS with gassist. In: Advances at the frontier of Learning Classifier Systems, pp.
282–290. Springer, Heidelberg (2007)

7. Bacardit, J., Garrell, J.M.: Bloat control and generalization pressure using the
minimum description length principle for a pittsburgh approach learning classifier
system. In: Proceedings of the 6th International Workshop on Learning Classifier
Systems. LNCS (LNAI). Springer, Heidelberg (in press, 2003)

8. Bacardit, J., Goldberg, D.E., Butz, M.V.: Improving the performance of a pitts-
burgh learning classifier system using a default rule. In: Kovacs, T., Llorà, X.,
Takadama, K., Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2003.
LNCS (LNAI), vol. 4399, pp. 291–307. Springer, Heidelberg (2007)

9. Bacardit, J., Krasnogor, N.: Empirical evaluation of ensemble techniques for a pitts-
burgh learning classifier system. In: Ninth International Workshop on Learning
Classifier Systems (IWLCS 2006). LNCS (LNAI). Springer, Heidelberg (to appear,
2006)

10. Bacardit, J., Krasnogor, N.: Smart crossover operator with multiple parents for a
pittsburgh learning classifier system. In: GECCO 2006: Proceedings of the 8th an-
nual conference on Genetic and evolutionary computation, pp. 1441–1448. ACM
Press, New York (2006)

11. Bacardit, J., Stout, M., Krasnogor, N., Hirst, J.D., Blazewicz, J.: Coordina-
tion number prediction using learning classifier systems: performance and inter-
pretability. In: GECCO 2006: Proceedings of the 8th annual conference on Genetic
and evolutionary computation, pp. 247–254. ACM Press, New York (2006)

12. Basu, M., Ho, T.K.E.: Data Complexity in Pattern Recognition. Springer, Hei-
delberg (2006)

13. Bernadó-Mansilla, E., Llorà, X., Traus, I.: Multiobjective Learning Classifier Sys-
tems. In: Multi-Objective Machine Learning. Studies in Computational Intelli-
gence, vol. 16, pp. 261–288. Springer, Heidelberg (2006)

14. Bernadó-Mansilla, E., Garrell-Guiu, J.M.: Accuracy-based learning classifier sys-
tems: Models, analysis and applications to classification tasks. Evolutionary Com-
putation 11, 209–238 (2003)

15. Bernadó-Mansilla, E., Ho, T.K.: Domain of Competence of XCS Classifier System
in Complexity Measurement Space. IEEE Transactions on Evolutionary Compu-
tation 9, 82–104 (2005)

16. Bernadó-Mansilla, E., Kam Ho, T.: On Classifier Domains of Competence. In:
Proceedings of the 17th International Conference on Pattern Recognition, vol. 1,
pp. 136–139 (2004)

17. Bernadó-Mansilla, E., Llorà, X., Garrell, J.M.: XCS and GALE: a comparative
study of two learning classifier systems with six other learning algorithms on clas-
sification tasks. In: Fourth International Workshop on Learning Classifier Systems
- IWLCS-2001, pp. 337–341 (2001)

16 J. Bacardit, E. Bernadó-Mansilla, and M.V. Butz

18. Bonarini, A.: Evolutionary Learning of Fuzzy rules: competition and cooperation.
In: Fuzzy Modelling: Paradigms and Practice, pp. 265–284. Kluwer Academic
Press, Norwell (1996)

19. Brown, G., Kovacs, T., Marshall, J.A.R.: Ucspv: principled voting in ucs rule pop-
ulations. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pp. 1774–1781. ACM Press, New York (2007)

20. Browne, W.: The development of an industrial learning classifier system for data-
mining in a steel hot strip mill. In: Bull, L. (ed.) Applications of Learning Classifier
Systems, pp. 223–259. Springer, Heidelberg (2004)

21. Browne, W.N., Ioannides, C.: Investigating scaling of an abstracted lcs utilising
ternary and s-expression alphabets. In: GECCO 2007: Proceedings of the 2007
GECCO conference companion on Genetic and evolutionary computation, pp.
2759–2764. ACM Press, New York (2007)

22. Bull, L., Hurst, J., Tomlison, A.: Self-adaptive mutation in classifier system con-
trollers. In: Meyer, J.A., Berthoz, A., Floreano, D., Roitblatt, H., Wilson, S. (eds.)
From Animals to Animats 6 - The Sixth International Conference on the Simula-
tion of Adaptive Behaviour. MIT Press, Cambridge (2000)

23. Bull, L., Studley, M., Bagnall, A., Whittley, I.: Learning classifier system en-
sembles with rule-sharing. IEEE Transactions on Evolutionary Computation 11,
496–502 (2007)

24. Bull, L. (ed.): Applications of Learning Classifier Systems. Springer, Heidelberg
(2004)

25. Bull, L.: On lookahead and latent learning in simple LCS. In: GECCO 2007: Pro-
ceedings of the 2007 GECCO conference companion on Genetic and evolutionary
computation, pp. 2633–2636. ACM, New York (2007)

26. Butz, M.V., Goldberg, D.E., Lanzi, P.L.: Computational complexity of the XCS
classifier system. In: Bull, L., Kovacs, T. (eds.) Foundations of Learning Clas-
sifier Systems. Studies in Fuzziness and Soft Computing, pp. 91–126. Springer,
Heidelberg (2005)

27. Butz, M.V.: Anticipatory learning classifier systems. Kluwer Academic Publishers,
Boston (2002)

28. Butz, M.V.: Kernel-based, ellipsoidal conditions in the real-valued XCS classifier
system. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and
evolutionary computation, pp. 1835–1842. ACM Press, New York (2005)

29. Butz, M.V.: Rule-Based Evolutionary Online Learning Systems: A Principled
Approach to LCS Analysis and Design. Springer, Heidelberg (2006)

30. Butz, M.V., Goldberg, D.E.: Bounding the population size in XCS to ensure
reproductive opportunities. In: Proceedings of the Fifth Genetic and Evolutionary
Computation Conference (GECCO 2003), pp. 1844–1856 (2003)

31. Butz, M.V., Goldberg, D.E., Lanzi, P.L.: Gradient descent methods in learn-
ing classifier systems: Improving XCS performance in multistep problems. IEEE
Transactions on Evolutionary Computation 9, 452–473 (2005)

32. Butz, M.V., Goldberg, D.E., Lanzi, P.L., Sastry, K.: Problem solution sustenance
in XCS: Markov chain analysis of niche support distributions and the impact on
computational complexity. Genetic Programming and Evolvable Machines 8, 5–37
(2007)

33. Butz, M.V., Hoffmann, J.: Anticipations control behavior: Animal behavior in an
anticipatory learning classifier system. Adaptive Behavior 10, 75–96 (2002)

34. Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.W.: Toward a theory of general-
ization and learning in XCS. IEEE Transactions on Evolutionary Computation 8,
28–46 (2004)

Learning Classifier Systems: Looking Back and Glimpsing Ahead 17

35. Butz, M.V., Lanzi, P.L., Wilson, S.W.: Hyper-ellipsoidal conditions in xcs: rota-
tion, linear approximation, and solution structure. In: GECCO 2006: Proceedings
of the 8th annual conference on Genetic and evolutionary computation, pp. 1457–
1464. ACM Press, New York (2006)

36. Butz, M.V., Pelikan, M., Llorà, X., Goldberg, D.E.: Automated global structure
extraction for effective local building block processing in XCS. Evol. Comput. 14,
345–380 (2006)

37. Butz, M.V., Sastry, K., Goldberg, D.E.: Strong, stable, and reliable fitness pres-
sure in XCS due to tournament selection. Genetic Programming and Evolvable
Machines 6, 53–77 (2005)

38. Casillas, J., Carse, B., Bull, L.: Fuzzy-xcs: A michigan genetic fuzzy system. IEEE
Transactions on Fuzzy Systems 15, 536–550 (2007)

39. Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems.
Evolutionary tuning and learning of fuzzy knowledge bases. World Scientific, Sin-
gapore (2001)

40. De Jong, K.: Learning with genetic algorithms: An overview. Mach. Learn. 3,
121–138 (1988)

41. DeJong, K.A., Spears, W.M.: Learning concept classification rules using genetic
algorithms. In: Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 651–656. Morgan Kaufmann, San Francisco (1991)

42. Dixon, P.W., Corne, D.W., Oates, M.J.: A Preliminary Investigation of Modified
XCS as a Generic Data Mining Tool. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W.
(eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 133–150. Springer, Heidelberg
(2002)

43. Drugowitsch, J., Barry, A.: A formal framework and extensions for function ap-
proximation in learning classifier systems. Machine Learning 70, 45–88 (2008)

44. Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algo-
rithms. Springer, Heidelberg (2002)

45. Fu, C., David, L.: A Modified Classifier System Compaction Algorithm. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 920–925.
Morgan Kaufmann Publishers Inc., San Francisco (2002)

46. Gérard, P., Meyer, J.A., Sigaud, O.: Combining latent learning and dynamic pro-
gramming in MACS. European Journal of Operational Research 160, 614–637
(2005)

47. Gérard, P., Sigaud, O.: Adding a generalization mechanism to YACS. In: Proceed-
ings of the Third Genetic and Evolutionary Computation Conference (GECCO
2001), pp. 951–957 (2001)

48. Ghahramani, Z., Wolpert, D.M.: Modular decomposition in visuomotor learning.
Nature, 392–395 (1997)

49. Ghosh, A., Nath, B.: Multi-objective rule mining using genetic algorithms. Infor-
mation Sciences 163, 123–133 (2004)

50. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Publishing Company, Inc., Reading (1989)

51. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Ge-
netic Algorithms. Kluwer Academic Publishers, Dordrecht (2002)

52. Grush, R.: The emulation theory of representation: Motor control, imagery, and
perception. Behavioral and Brain Sciences 27, 377–396 (2004)

53. Haruno, M., Wolpert, D.M., Kawato, M.: Hierarchical mosaic for movement gen-
eration. In: Ono, T., Matsumoto, G., Llinas, R., Berthoz, A., Norgren, R., Nishijo,
H., Tamura, R. (eds.) Excepta Medica International Coungress Series, vol. 1250,
pp. 575–590. Elsevier, Amsterdam (2003)

18 J. Bacardit, E. Bernadó-Mansilla, and M.V. Butz

54. Dam, H.H., Lokan, C., Abbas, H.A.: Evolutionary online data mining: An inves-
tigation in a dynamic environment. In: Evolutionary Computation in Dynamic
and Uncertain Environments, pp. 153–178. Springer, Heidelberg (2007)

55. Ho, T.K., Basu, M.: Measuring the complexity of classification problems. In: 15th
International Conference on Pattern Recognition, pp. 43–47 (2000)

56. Holland, J.H.: A cognitive system with powers of generalization and adaptation
(Unpublished manuscript) (1977)

57. Holland, J.H., Reitman, J.S.: Cognitive systems based on adaptive algorithms.
In: Hayes-Roth, D., Waterman, F. (eds.) Pattern-directed Inference Systems, pp.
313–329. Academic Press, New York (1978)

58. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press (1975)

59. Holland, J.H.: Adaptation. In: Rosen, R., Snell, F. (eds.) Progress in theoretical
biology, vol. 4, pp. 263–293. Academic Press, New York (1976)

60. Holland, J.H.: Properties of the bucket brigade algorithm. In: Proceedings of an
International Conference on Genetic Algorithms and their Applications, pp. 1–7
(1985)

61. Holmes, J.H., Durbin, D.R., Winston, F.K.: The learning classifier system: an evo-
lutionary computation approach to knowledge discovery in epidemiologic surveil-
lance. Artificial Intelligence In Medicine 19, 53–74 (2000)

62. Hurst, J., Bull, L.: A neural learning classifier system with self-adaptive construc-
tivism for mobile robot learning. Artificial Life 12, 1–28 (2006)

63. Ishibuchi, H., Nakashima, T., Murata, T.: Three-objective genetics-based machine
learning for linguistic rule extraction. Information Sciences 136, 109–133 (2001)

64. Ishibuchi, H., Nojima, Y.: Analysis of interpretability-accuracy tradeoff of fuzzy
systems by multiobjective fuzzy genetics-based machine learning. International
Journal of Approximate Reasoning 44, 4–31 (2007)

65. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary compu-
tation. Soft Comput. 9, 3–12 (2005)

66. Kharbat, F., Bull, L., Odeh, M.: Revisiting genetic selection in the xcs learning
classifier system. In: Proceedings of the IEEE Congress on Evolutionary Compu-
tation (CEC 2005), pp. 2061–2068 (2005)

67. Kovacs, T.: XCS Classifier System Reliably Evolves Accurate, Complete and Min-
imal Representations for Boolean Functions. In: Roy, R., Chawdhry, P., Pant,
R. (eds.) Soft Computing in Engineering Design and Manufacturing, pp. 59–68.
Springer, Heidelberg (1997)

68. Krasnogor, N., Smith, J.: A tutorial for competent memetic algorithms: model,
taxonomy and design issues. IEEE Transactions on Evolutionary Computation 9,
474–488 (2005)

69. Bull, L., Studley, M., Bagnall, A.J., Whittley, I.: On the use of rule sharing in
learning classifier system ensembles. In: Proceedings of the 2005 Congress on
Evolutionary Computation (2005)

70. Landau, S., Picault, S., Sigaud, O., Gérard, P.: Further comparison between AT-
NoSFERES and XCSM. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.)
IWLCS 2002. LNCS (LNAI), vol. 2661, pp. 99–117. Springer, Heidelberg (2003)

71. Lanzi, P.L.: An analysis of generalization in the XCS classifier system. Evolution-
ary Computation 7, 125–149 (1999)

72. Lanzi, P.L.: Adaptive agents with reinforcement learning and internal memory. In:
From Animals to Animats 6: Proceedings of the Sixth International Conference
on Simulation of Adaptive Behavior, pp. 333–342 (2000)

Learning Classifier Systems: Looking Back and Glimpsing Ahead 19

73. Lanzi, P.L.: Learning classifier systems: then and now. Evolutionary Intelligence 1,
63–82 (2008)

74. Lanzi, P.L., Loiacono, D.: Classifier systems that compute action mappings. In:
GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolution-
ary computation, London, England, pp. 1822–1829. ACM Press, New York (2007)

75. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Extending xcsf beyond
linear approximation. In: GECCO 2005: Proceedings of the 2005 conference on
Genetic and evolutionary computation, pp. 1827–1834. ACM, New York (2005)

76. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Classifier prediction
based on tile coding. In: GECCO 2006: Genetic and Evolutionary Computation
Conference, pp. 1497–1504 (2006)

77. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Prediction update al-
gorithms for XCSF: RLS, kalman filter, and gain adaptation. In: GECCO 2006:
Proceedings of the 8th annual conference on Genetic and evolutionary computa-
tion, pp. 1505–1512. ACM Press, New York (2006)

78. Lanzi, P.L., Perrucci, A.: Extending the representation of classifier conditions
part II: From messy coding to s-expressions. In: Banzhaf, W., Daida, J., Eiben,
A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of
the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA,
vol. 1, pp. 345–352. Morgan Kaufmann, San Francisco (1999)

79. Lanzi, P.L., Rocca, S., Solari, S.: An approach to analyze the evolution of symbolic
conditions in learning classifier systems. In: GECCO 2007: Proceedings of the
2007 GECCO conference companion on Genetic and evolutionary computation,
pp. 2795–2800. ACM Press, New York (2007)

80. Larranaga, P., Lozano, J. (eds.): Estimation of Distribution Algorithms, A New
Tool for Evolutionnary Computation. Genetic Algorithms and Evolutionnary
Computation. Kluwer Academic Publishers, Dordrecht (2002)

81. Llorà, X., Priya, A., Bhargava, R.: Observer-invariant histopathology using
genetics-based machine learning. Natural Computing, Special issue on Learning
Classifier Systems (in press, 2008)

82. Llorà, X.,Garrell, J.M.: Knowledge-independent data miningwith fine-grained par-
allel evolutionary algorithms. In:Proceedingsof theThirdGenetic andEvolutionary
Computation Conference, pp. 461–468. Morgan Kaufmann, San Francisco (2001)

83. Llorà, X., Reddy, R., Matesic, B., Bhargava, R.: Towards better than human ca-
pability in diagnosing prostate cancer using infrared spectroscopic imaging. In:
GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolu-
tionary computation, pp. 2098–2105. ACM Press, New York (2007)

84. Llorà, X., Sastry, K.: Fast rule matching for learning classifier systems via vector
instructions. In:GECCO 2006: Proceedings of the 8th annual conference on Genetic
and evolutionary computation, pp. 1513–1520. ACM Press, New York (2006)

85. Llorà, X., Sastry, K., Goldberg, D.E., delaOssa, L.: The x-ary extended compact
classifier system: Linkage learning in pittsburgh LCS. In: Proceedings of the 9th
International Workshop on Learning Classifier Systems - IWLCS 2006. LNCS
(LNAI). Springer, Heidelberg (in press, 2006)

86. Llorà, X., Sastry, K., Yu, T.L., Goldberg, D.E.: Do not match, inherit: fitness
surrogates for genetics-based machine learning techniques. In: GECCO 2007: Pro-
ceedings of the 9th annual conference on Genetic and evolutionary computation,
pp. 1798–1805. ACM, New York (2007)

87. Loiacono, D., Marelli, A., Lanzi, P.L.: Support vector regression for classifier
prediction. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pp. 1806–1813. ACM Press, New York (2007)

20 J. Bacardit, E. Bernadó-Mansilla, and M.V. Butz

88. Luca Lanzi, P., Loiacono, D.: XCSF with neural prediction. Evolutionary Com-
putation, CEC 2006. IEEE Congress on (0-0 0) 2270–2276 (2006)

89. Marshall, J.A.R.,Brown,G.,Kovacs,T.:Bayesian estimationof rule accuracy inucs.
In: GECCO 2007: Proceedings of the 2007 GECCO conference companion on Ge-
netic and evolutionary computation, pp. 2831–2834. ACM Press, New York (2007)

90. O’Regan, J.K., Noë, A.: A sensorimotor account of vision and visual consciousness.
Behavioral and Brain Sciences 24, 939–1031 (2001)

91. Orriols-Puig, A., Bernadó-Mansilla, E.: The Class Imbalance Problem in UCS
Classifier System: Fitness Adaptation. In: Proceedings of the 2005 Congress on
Evolutionary Computation, vol. 1, pp. 604–611. IEEE Computer Society Press,
Los Alamitos (2005)

92. Orriols-Puig, A., Bernadó-Mansilla, E.: Bounding XCS’s Parameters for Unbal-
anced Datasets. In: Proceedings of the 2006 Genetic and Evolutionary Computa-
tion Conference, vol. 2, pp. 1561–1568. ACM Press, New York (2006)

93. Orriols-Puig, A., Bernadó-Mansilla, E.: The Class Imbalance Problem in Learning
Classifier Systems: A Preliminary Study. In: Kovacs, T., Llorà, X., Takadama, K.,
Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2003. LNCS (LNAI),
vol. 4399, pp. 164–183. Springer, Heidelberg (2007)

94. Orriols-Puig, A., Casillas, J., Bernadó-Mansilla, E.: Fuzzy-UCS: A Michigan-style
Learning Fuzzy-Classifier System for Supervised Learning. IEEE Transactions on
Evolutionary Computation (in press, 2008)

95. Orriols-Puig, A., Goldberg, D., Sastry, K., Bernadó-Mansilla, E.: Modeling XCS
in Class Imbalances: Population Size and Parameter Settings. In: Proceedings of
the 2007 Genetic and Evolutionary Computation Conference, vol. 2, pp. 1838–
1845. ACM Press, New York (2007)

96. Orriols-Puig, A., Sastry, K., Lanzi, P., Goldberg, D., Bernadó-Mansilla, E.: Model-
ing selection pressure in XCS for proportionate and tournament selection. In: Pro-
ceedings of the 2007 Genetic and Evolutionary Computation Conference, vol. 2,
pp. 1846–1853. ACM Press, New York (2007)

97. Orriols Puig, A., Bernadó-Mansilla, E.: Analysis of Reduction Algorithms in XCS
Classifier System. In: Recent Advances in Artificial Intelligence Research and
Development. Frontiers in Artificial Intelligence and Applications, vol. 113, pp.
383–390. IOS Press, Amsterdam (2004)

98. Orriols-Puig, A., Bernadó-Mansilla, E., Sastry, K., Goldberg, D.E.: Substructrual
surrogates for learning decomposable classification problems: implementation and
first results. In:GECCO 2007: Proceedings of the 2007 GECCO conference compan-
iononGeneticandevolutionarycomputation,pp.2875–2882.ACM,NewYork(2007)

99. Orriols-Puig, A., Sastry, K., Goldberg, D.E., Bernadó-Mansilla, E.: Substructural
surrogates for learning decomposable classification problems. In: Bacardit, J., et
al. (eds.) IWLCS 2006/2007. LNCS (LNAI), vol. 4998. Springer, Heidelberg (2008)

100. Parodi, A., Bonelli, P.: A new approach to fuzzy classifier systems. In: 5th In-
ternational Conference on Genetic Algorithms, pp. 223–230. Morgan Kaufmann,
San Francisco (1993)

101. Rivest, R.L.: Learning decision lists. Machine Learning 2, 229–246 (1987)
102. Smith, R.E., El-Fallah, A., Ravichandran, B., Mehra, R., Dike, B.A.: The fighter

aircraft LCS: A real-world, machine innovation application. In: Bull, L. (ed.) Ap-
plications of Learning Classifier Systems, pp. 113–142. Springer, Heidelberg (2004)

103. Smith, R.E., Jiang, M.K.: A learning classifier system with mutual-information-
based fitness. Evolutionary Computation, 2007. CEC 2007. IEEE Congress on
(25-28 Sept. 2007) (2173)–2180

Learning Classifier Systems: Looking Back and Glimpsing Ahead 21

104. Smith, S.F.: A Learning System Based on Genetic Algorithms. PhD thesis, Uni-
versity of Pittsburgh (1980)

105. Smith, S.F.: Flexible learning of problem solving heuristics through adaptive
search. In: Proceedings of the Eighth International Joint Conference on Artificial
Intelligence, Los Altos, CA, pp. 421–425. Morgan Kaufmann, San Francisco (1983)

106. Stolzmann, W.: Anticipatory classifier systems. In: Genetic Programming 1998:
Proceedings of the Third Annual Conference, pp. 658–664 (1998)

107. Stone, C., Bull, L.: For real! XCS with continuous-valued inputs. Evolutionary
Computation Journal 11, 298–336 (2003)

108. Stout, M., Bacardit, J., Hirst, J.D., Krasnogor, N.: Prediction of recursive convex
hull class assignments for protein residues. Bioinformatics (in press, 2008)

109. Suzuki, T., Kodama, T., Furuhashi, T., Tsut, H.: Fuzzy modeling using genetic
algorithms with fuzzy entropy as conciseness measure. Information Sciences 136,
53–67 (2001)

110. Tamee, K., Bull, L., Pinngern, O.: Towards clustering with XCS. In: GECCO
2007: Proceedings of the 9th annual conference on Genetic and evolutionary com-
putation, pp. 1854–1860. ACM Press, New York (2007)

111. Valenzuela-Rendón, M.: The fuzzy classifier system: A classifier system for con-
tinuously varying variables. In: Fourth International Conference on Genetic Al-
gorithms (ICGA), pp. 346–353. Morgan Kaufmann, San Francisco (1991)

112. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3,
149–175 (1995)

113. Wilson, S.W.: Knowledge growth in an artificial animal. In: Proceedings of an
International Conference on Genetic Algorithms and Their Applications, pp. 16–
23 (1985)

114. Wilson, S.W.: Classifier systems and the animat problem. Machine Learning 2,
199–228 (1987)

115. Wilson, S.W.: ZCS: A zeroth level classifier system. Evolutionary Computation 2,
1–18 (1994)

116. Wilson, S.W.: Get real! XCS with continuous-valued inputs. In: Booker, L., For-
rest, S., Mitchell, M., Riolo, R.L. (eds.) Festschrift in Honor of John H. Holland,
Center for the Study of Complex Systems, pp. 111–121 (1999)

117. Wilson, S.W.: Classifiers that approximate functions. Natural Computing: an in-
ternational journal 1, 211–234 (2002)

118. Wilson, S.W.: Compact Rulesets from XCSI. In: Lanzi, P.L., Stolzmann, W., Wil-
son, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321. Springer, Heidelberg (2002)

119. Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor
control. Neural Networks 11, 1317–1329 (1998)

120. Wyatt, D., Bull, L.: A memetic learning classifier system for describing continuous-
valued problem spaces. In: Hart, W., Krasnogor, N., Smith, J. (eds.) Recent Ad-
vances in Memetic Algorithms, pp. 355–396. Springer, Heidelberg (2004)

121. Wyatt, D., Bull, L., Parmee, I.: Building Compact Rulesets for Describing
Continuous-Valued Problem Spaces Using a Learning Classifier System. In:
Parmee, I. (ed.) Adaptive Computing in Design and Manufacture, vol. VI, pp.
235–248. Springer, Heidelberg (2004)

122. Zatuchna, Z.V.: AgentP: A Learning Classifier System with Associative Percep-
tion in Maze Environments. PhD thesis, School of Computing Sciences, UEA
(2005)

Analysis of Population Evolution in Classifier
Systems Using Symbolic Representations

Pier Luca Lanzi1,2, Stefano Rocca1, Kumara Sastry2, and Stefania Solari1

1 Artificial Intelligence and Robotics Laboratory (AIRLab)
Politecnico di Milano. I-20133, Milano, Italy

pierluca.lanzi@polimi.it,
rocca.ste@gmail.com, solari.stefania@gmail.com

2 Illinois Genetic Algorithm Laboratory
University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

lanzi@illigal.ge.uiuc.edu, kumara@kumarasastry.com

Abstract. This paper presents an approach to analyze population evo-
lution in classifier systems using a symbolic representation. Given a
sequence of populations, representing the evolution of a solution, the
method simplifies the classifiers in the populations by reducing them
to their “canonical form”. Then, it extracts all the subexpressions that
appear in all the classifier conditions and, for each subexpression, it com-
putes the number of occurrences in each population. Finally, it computes
the trend of all the subexpressions considered. The expressions which
show an increasing trend through the course of evolution are viewed as
building blocks that the system has used to construct the solution.

1 Introduction

Generalization is one of the most important features of learning classifier systems
which heavily relies on the representation of classifier conditions. Among the sev-
eral condition representations introduced in the literature [1,4,6,12,13,14,15,16],
symbolic (GP-like) representation is probably the most general one but also the
most computationally demanding one. Symbolic conditions are also daunting to
study. The bloat that affects variable size and GP-like representations [2,6,7,8]
and the possibly high number of classifiers involved makes the analysis of this
type of systems more difficult [10].

In this paper, we present a method to analyze the evolution of symbolic con-
ditions in classifier systems and apply it to analyze how XCS with GP-like con-
ditions solves two simple problems. The results we present demonstrate that our
method can trace how the genetic pressure in XCS favors the evolution of subex-
pressions that are useful to construct an optimal solution to the target problem.
The method takes as input a sequence of evolved populations, it extracts a set
of frequent patterns which identify useful pieces of the problem solution, so to
track the emergence of the optimal solution. When applied to experiments that
reached optimality, the method shows what interesting pieces of knowledge XCS
recombined to come up with the solution. When applied to experiments that did

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 22–45, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Analysis of Population Evolution in Classifier Systems 23

not reach optimality, the method shows that interesting patterns are still present
in the populations but a higher number of uninteresting (overly general or inac-
curate) patterns dominates the populations. The method works as follows. Given
a sequence of populations, representing the evolution of a problem solution, the
method (i) reduces the classifiers in the populations to their “canonical form”
(Section 2.1) and (ii) it simplifies the populations (Section 2.2); then, (iii) it
extracts all the subexpressions that appear in all the classifier conditions (Sec-
tion 2.3) and (iv) for each subexpression it computes the number of occurrences
in each population (Section 3); at last, (v) for each subexpression considered,
it computes the trend of the subexpressions extracted in the populations (Sec-
tion 4). In this context, the expressions with an increasing trend through the
course of evolution are viewed as the building blocks that the system has used
to construct the solution.

2 Subexpressions Extraction

Given a sequence of populations representing the evolution of a solution, the
proposed method transforms each classifier in the populations into a “canonical
form” so that two syntactically different but structurally equivalent classifiers are
represented in the same way, i.e., by the same “canonical form”. The simplified
classifiers are then analyzed to extract the recurrent subexpressions which might
be viewed as the elementary blocks that the system uses to construct the final
solution.

2.1 The Canonical Form

A classifiers is transformed into its “canonical form” through four steps: (i)
simplification of the classifier condition, (ii) conversion of the condition into
disjunctive normal form, (iii) normalization and (iv) sorting of the expressions
that compose the conjuncts.

Simplification. To reduce the amount of useless and redundant code, we ini-
tially simplify classifier conditions before extracting the subexpressions. For this
purpose, we apply a set of simplification rules and specialized operators [3] which
in this work are provided by Mathematica R© [9]. Details about Mathematica R©

and the simplification functions we developed can be found in [10]. This first
step brings classifier conditions into a more compact form. For example, it maps
the condition “X0+X1+ (1− 1)X0− 10 > −5 AND 5(X0−X0) = 0” into the
more compact “X0 + X1 − 5 > 0”.

Conversion into disjunctive normal form. If Boolean operators are in-
cluded, individuals are then expanded into their the disjunctive normal form.
The disjunctive normal form of an expression is a disjunction (sequence of ORs)
consisting of one or more disjuncts, each of which is a conjunction (AND) of one
or more Boolean expressions. This step splits classifier conditions into a set of
subexpressions grouped by a set of “OR” clauses. For example, it transforms the

24 P.L. Lanzi et al.

condition “X0 = 4 AND (X1 = 1 OR X1 = 2)” into “X0 = 4 AND X1 = 1 OR
X0 = 4 AND X1 = 2” in which three subexpressions (“X0 = 4 AND X1 = 1”,
“X0 = 4”, and “AND X1 = 2”) are grouped together by two OR clauses. This
step is performed by Mathematica R© (see [10] for details).

Normalization. Although all the expressions have been simplified in a dis-
junctive normal form, two equivalent subexpressions may still be syntactically
different. For example, “2(X0 + X1) < 9” and “X1 + X0 < 9/2” are equiva-
lent, they cannot be further simplified, but they are syntactically different. To
tackle this issue, we have developed a routine in Mathematica R© that rearranges
an elementary expression into a normalized form such that two equivalent ex-
pressions become syntactically the same. This routine subtracts the second term
of the equality or inequality to both sides of the equality/inequality forming a
second term that is 0. Then it expands out products and positive integer pow-
ers in the first term, and divides both sides by the first coefficient of the first
term. This routine is described in details in [10]. By applying this routine to the
two elementary expressions previously introduced we obtain the same elemen-
tary expression “1 − 2

9X0 − 2
9X1 > 0”. Since sometimes this normalized form

can be difficult to read, each elementary expression is replaced with a chosen
elementary expression used to represent all the elementary expressions with the
same normalized form. After this replacement, equivalent expressions differently
represented are mapped into the same, syntactically equivalent, expression. Note
that, if an individual contains only Boolean operators, this step is unnecessary
because all the elementary expressions are literals.

Sort. Two expressions consisting in the same set of subexpressions conjuncted in
a different order are syntactically different but actually equivalent. For example,
“X0 > 0 AND X1 > 3” and “X1 > 3 AND X0 > 0” are syntactically different
but equivalent in that they represent the same concept. To avoid this issue it is
possible to split each expression around the “AND” clauses, alphabetically sort
the obtained set of subexpressions, and then rebuild them using “AND” clauses.
For instance, by applying this procedure to the previous expression we obtain
the same expression “X0 > 0 AND X1 > 3”.

2.2 Population Simplification

All the symbolic conditions in the population are reduced to the previously
described “canonical form”. For this purpose we use a data structure Ms which
maps each expression to its normalized form. This mapping assures that in each
set of subexpressions, built using the same Ms, equivalent subexpressions have
the same representation. In addition, if an expression has already been found it is
not necessary to recompute its canonical form. Elements in Ms are pairs (ei, si)
in which each expression ei is mapped into its simplified expression si that is
also used to represent all the elementary expressions that are equivalent to ei.

Analysis of Population Evolution in Classifier Systems 25

Algorithm 1. Simplification of the population Pt

1: Load Ms

2: Load Pt

3: for all i : i ∈ Pt do {simplifies the individual}
4: es ←Simplify(i) {converts individual into a normal disjunctive form}
5: ednf ←Expand(es)
6: SOR ←Split(ednf ,“OR”) {normalize the elementary expression and sorts them}
7: for all se : se ∈ SOR do
8: is ←NormalizedForm(Ms,se)
9: end for

10: i ← ∅ {substitutes each individual with the “canonical form”}
11: for all se : se ∈ SOR do
12: if i = ∅ then
13: i ← i + se

14: else
15: i ← i+“OR”+se

16: end if
17: end for
18: end for

Algorithm 1 describes the method we developed to simplify classifier popu-
lations. At first, the population Pt and the structure Ms are loaded (steps 1
and 2, Algorithm 1). Then for each individual i in the population Pt (step 3,
Algorithm 1): (i) the individual is simplified by applying the first step described
in the previous section (step 4, Algorithm 1); (ii) the simplified individual es is
transformed in its disjunctive normal form ednf by applying the second step
described in the previous section, obtaining (step 5, Algorithm 1); (iii) the set of
subexpressions SOR is obtained by splitting ednf around the “OR” clauses (step
6, Algorithm 1); (iv) each subexpression se is then replaced with its represen-
tation in a normalized form, applying the steps three and four described in the
previous section (steps 7 and 8, Algorithm 1); (v) an individual i is replaced with
a new individual built joining the obtained subexpressions with “OR” (steps 11
to 16, Algorithm 1).

Algorithm 2 shows the routine NormalizedForm used by Algorithm 1 to
compute the normalized form of an expression se by applying the steps three
and four described in the previous section. Initially, the set SAND is computed by
splitting se around the AND clauses (step 1, Algorithm 2). For each expression
ee in SAND the following steps are performed: (i) search in Ms for the elementary
expression and save in t the corresponding elementary expression that has to be
used (step 3, Algorithm 2); (ii) if the elementary expression ee has been found
replace it with the corresponding elementary expression previously found (step
4 and 5, Algorithm 2); (iii) compute the normalized form of the elementary
expression using Mathematica R© and save it in c (step 7, Algorithm 2); (iv)
find the elementary expression in Ms corresponding to an elementary expression
with the same normalized form of ee and put it in ec (step 8, Algorithm 2); (v)
add the mapping (ee, ec) to Ms (step 9, Algorithm 2). After all the elementary

26 P.L. Lanzi et al.

Algorithm 2. Routine NormalizedForm
NormalizedForm(Ms,se)
1: SAND ←Split(se,“AND”)
2: for all ee : ee ∈ SAND do {extracts the normalized expression of ee}
3: t : (ee, t) ∈ Ms

4: if t �= ∅ then
5: ee ← t
6: else {computes the normalized form of ee}
7: c ← canonicalForm(ee) {extracts the elementary expression with the same

normalized form from Ms}
8: ec : (e, ec) ∈ Ms ∧ canonicalForm(e) = c {adds the pair to Ms}
9: Ms ← Ms ∪ (ee, ec)

10: ee ← ec

11: end if
12: end for
13: sort(SAND)
14: se ← ∅ {builds the new subexpression}
15: for all ee : ee ∈ SAND do
16: if se = ∅ then
17: se ← se + ee

18: else
19: se ← se+“AND”+ee

20: end if
21: end for
22: return se

expressions in SAND have been modified, SAND is alphabetically sorted (step
13, Algorithm 2) and the subexpression se is replaced with an empty one (step
14, Algorithm 2). Finally, the expressions in SAND are joined with “AND” in
order to form the new subexpression (steps 15 to 20, Algorithm 2).

2.3 Extraction of Subexpressions

We extract the subexpressions appearing in the population by splitting the clas-
sifier conditions, expressed in the canonical form, around certain operators. The
issue in this case is how to decide around which operators we should split the
conditions. We need subexpressions that represent nuggets of interesting infor-
mation about the problem solution. As an example, consider the problem of
learning the inequality “X0 + X1 > 4” with X0, X1 ∈ N. Suppose we have
the individual “3X0 > 10”. If we split the expression “3X0 > 10” around the
“>” symbol we obtain two subexpressions that do not represent any interesting
information about the solution. The same happens if we split a subexpression
like “X1 ∗ (X1 + X2)” around “∗”: in this case each of the two subexpressions
defines a sort of “context” for the other one. Furthermore consider the expression
“X1 > 3 AND NOT (X0 = 0)”. If we split this expression around the “AND”
clause we obtain the two subexpressions “X1 > 3” and “NOT (X0 = 0)”. In this

Analysis of Population Evolution in Classifier Systems 27

Algorithm 3. Algorithm to compute the frequencies of the subexpressions in
population Pt

1: n ← 0
2: Sn ← ∅
3: for all i ∈ Pt do {extracts the subexpressions}
4: SOR ← Split(i, OR)
5: for all se : se ∈ SOR do {updates the number of occurrences of the subexpression

se}
6: UpdateOccurrences(Sn, id[i], se)
7: n ← n + 1
8: end for
9: end for

10: for all sn : sn ∈ Sn do {computes the frequencies}
11: sn.occ ← sn.occ/n
12: output sn

13: end for

case the second subexpression does not represent interesting information about
the problem solution. This happens because also in this case each subexpression
defines a sort of “context” for the other. Finally consider another expression, that
is “X1 > 3 AND NOT (X0 = 0) OR X0 + X1 > 4”. If we split this expression
around “OR” we obtain the two subexpressions “X1 > 3 AND NOT (X0 = 0)”
and “X0 + X1 > 4”, which both represent very interesting information about
the problem solution. This is because two subexpressions joint by “OR” are in-
dependent, therefore we choose to extract subexpressions splitting individuals
around “OR”. Furthermore individuals are represented by a disjunctive normal
form, so there is no problem in doing it.

3 Subexpressions Counting

After a population has been simplified and all the classifiers in it have been re-
duced to a canonical form, the classifiers conditions are analyzed and the subex-
pressions in the populations are counted. This phase takes as input a population
Pt of individuals represented in their canonical form and produces a data set of
triplets St each one consisting of (i) a normalized subexpression extracted from
the conditions expressed in the “canonical form”, (ii) the number of occurrences
of the subexpression in the population Pt, and (iii) the set of the individuals in
Pt which contains subexpressions that are equivalent to the first element of the
triplet. The set St contains all the distinct subexpressions found in the popula-
tion Pt and maps them to the conditions where such subexpressions were found.
By applying this extraction procedure to a sequence of evolving populations, rep-
resented in canonical form, it is possible to track the evolution of subexpressions
appearing in the population.

28 P.L. Lanzi et al.

Subexpressions with an increasing trend may be viewed as the useful compo-
nent that the system exploits to build up the final solution; subexpressions with
a constant or decreasing trend may be considered useless or too specific.

Algorithm 4. Routine UpdateOccurrences
UpdateOccurrences(Sn,id[i],se)
1: j ← −1 {searches for the subexpression se in Sn}
2: j : Sn[j].subexpression = se

3: if j > −1 then {the subexpression has been found}
4: Sn[j].occ ← Sn[j].occ + 1
5: Sn[j].individuals ← Sn[j].individuals ∪ id[i])
6: return TRUE
7: else {the subexpressions has not been found, creates a new triplet}
8: Sn ← Sn ∪ (se, 1, id[i])
9: return TRUE

10: end if
11: return FALSE

The frequencies of the subexpressions in the population are computed using
Algorithm 3. The algorithm is applied to a population Pt of classifiers that have
been already transformed in their canonical form and outputs the set of the
subexpressions found in the population with their frequencies. First the set Sn

(step 1, Algorithm 3) and the total number of occurrences of the subexpres-
sions n (step 2, Algorithm 3) are initialized. Then for each individual i in the
population Pt (step 3, Algorithm 3): (i) the set of subexpressions SOR is ob-
tained by splitting the individual i around “OR” (step 4, Algorithm 3); (ii) for
each subexpression se in SOR the number of occurrences of se is updated and
also the total number of occurrences is updated (steps 5, 6, and 7, Algorithm
3). After the set Sn has been built, the following cycle is performed. For each
triplet sn in Sn (step 10, Algorithm 3): (i) the number of occurrences sn.occ
of the subexpression is replaced with the frequency of the subexpression (step
11, Algorithm 3); (ii) the triplet sn is the output (step 12, Algorithm 3). The
procedure UpdateOccurrences, which updates the number of occurrences of
a subexpression se in Sn, is reported as Algorithm 4. The procedure works as
follows: (i) the subexpression se is searched in Sn (step 2, Algorithm 4); (ii)
if it has been found (step 3, Algorithm 4), the number of occurrences of the
subexpression is incremented (step 4, Algorithm 4), and the identifier of the
individual is added to the set of the individuals that contain the subexpression
se (step 5, Algorithm 4); (iii) otherwise a new triplet with the subexpression
se, the number of occurrences equal to one, and the identifier of the individual
id[i] is added to Sn (step 8, Algorithm 4). Given a population Pt, the algorithm
outputs a set St of triplets each one consisting of (i) a subexpression, (ii) the
frequency of the subexpression in the population Pt, and (iii) the set of the in-
dividuals in Pt that contain subexpressions that are semantically equivalent to
the first element of the triplet. By applying this algorithm to the populations

Analysis of Population Evolution in Classifier Systems 29

we obtain a set of St. Two equivalent subexpressions which represent the same
concept and belong to two different St (i.e., appear to two different populations)
are also syntactically equivalent. Therefore, since it is possible to identify the
same subexpression (the same concept) along the sequence of population, it is
also possible to analyze the trend of a subexpression in all the populations Pt

produced during an experiment.

4 Analysis of Evolving Populations

We can combine the extraction (Section 2) and the counting (Section 3) steps
to build up a method to analyze the evolution of classifiers populations in XCS
with symbolic (GP-like) conditions [6,5]. The method takes as input a sequence
of evolving population {Pt}t=0,1,..., it applies the extraction and the counting
procedures to each population, and then it computes the trend of the most
frequent subexpressions in the evolving populations. The idea is that the analysis
of such a trend can help in explaining how XCS constructs solutions of symbolic
conditions from bits and pieces of existing conditions. Subexpressions that are
useful in terms of problem solution should show an increasing trend; in contrast,
subsexpressions that are useless in terms of problem solution (e.g., because overly
general or overly specific) are hypothesized to have a non-increasing trend.

5 Experimental Validation

To validate the proposed approach, we applied it to analyze how XCS with
GP-based conditions [6] solves two simple problems: (i) the learning of the in-
equality “X0 + X1 > 4” with X0, X1 ∈ N and X0, X1 ∈ [0, 9], taken from [17];
and (ii) the learning of the inequality “X0 ∗ X1 > 7” with X0, X1 ∈ N and
X0, X1 ∈ [0, 9]. For this purpose, we applied the standard experimental design
we used elsewhere for similar problems [6,5]; classifier conditions are defined over
the set of functions F = {NOT, AND, OR, >, =, +, −, ∗} and the set of ter-
minals T = {0, . . . , 9, X0, X1}. For each experiment, we performed 10 runs
and saved all the intermediate populations. We partitioned each population in
two subsets, one for each possible actions; each subset contains the classifiers
in the population that advocate the same action. For each subset, the following
steps are performed: (i) extraction, to simplify each classifier into its canonical
form; (ii) counting, to extract the set of all subexpressions with their frequency;
then, for each run, (iii) we analyze the trend of the frequencies of each sub-
populations identified by each available action. The results we present confirm
what we expected: the frequency of general subexpressions that represent useful
information about the problem has a growing trend, whereas the frequency of
less important subexpressions has a constant or decreasing trend. Note that, as
a proof of principle, in this paper we analyze only two runs for each problem:
one in which XCS evolved an optimal solution; one in which XCS did not evolve
an optimal solution.

30 P.L. Lanzi et al.

5.1 Experiment 1: Sum of Two Variables

At first, we considered the problem of learning the inequality “X0 + X1 > 4”
with X0, X1 ∈ N and X0, X1 ∈ [0, 9] using a population of 1000 classifiers. We
performed 10 runs, each one consisting of 50000 learning problems. For each run,
we saved the population every 1000 steps, so at the end of each run we had a se-
quence of 50 populations. Note that we only performed 50000 learning problems
for each run, so to have at least one run that did not reach optimal performance.
Here, we analyze two runs: one is an example of successful convergence, one is
an example of a run that did not reach optimality.

The first run we consider reached optimality after about 44000 steps. We begin
by analyzing the classifiers that advocate action 0 and represent the negation of
the inequality “X0+X1 > 4”, i.e., “X0+X1 < 5”. Figure 1 shows the trend of
the frequencies of recurrent subexpressions. We have plotted the subexpressions
with the highest average frequency. From the plot reported in Figure 1, it is
possible to note that subexpressions representing interesting information about
the problem have an increasing trend; whereas less relevant subexpressions have
a decreasing trend. To better analyze the trends of subexpressions in population
we apply linear regression to the data collected and obtain the plot reported
in Figure 2. From this plot we extract the following recurrent subexpressions
with an increasing trend: (i) “X02 ∗ X1 = 3”, (ii) “9 ∗ (X0 + X0 ∗ X1 + X12) <
27+26∗X1”, (iii) “5∗X0 < 14 AND X1 < 3”, (iv) “X0∗X12 = 3 AND X1 < 3”,
(v) “X0 ∗ X12 = 3”, and (vi) “5 > X0 AND X1 < 1”. The subexpression (iv)
can be further simplified to “X0 = 3 AND X1 = 1” because X0, X1 ∈ N,
but Mathematica R© [9] could not perform this simplification because we have

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1000 6000 11000 16000 21000 26000 31000 36000 41000 46000

Step

F
re

q
u

en
cy

X0 < 2 AND X1 < 3 X0*X1^2 = 3 AND X1 < 9

X0^2*X1 = 3 9*(X0 + X0*X1 + X1^2) < 27 + 26*X1

5 > X0 AND X1 < 3 X0*X1^2 = 3

5*X0 < 14 AND X1 < 3 X0*X1^2 = 3 AND X1 < 3

X0*(44 + 1575*X0*X1) = 0 AND X1 < 9 5 > X0 AND X1 < 1

-(X0*(-3 + X0 + X0*(-3 + X0 + X1))) > X1 -(X0*(-3 + X0 + X1)) > X1

X0 < 2 AND X1 < 9 1 + X1 > 2*X0*X1 AND X1 < 9

9·(x1^2 + x0·(2 + x1)) < 54 + 26·x1

Fig. 1. Frequency trends of the subexpressions for the classifiers with action 0

Analysis of Population Evolution in Classifier Systems 31

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1000 6000 11000 16000 21000 26000 31000 36000 41000 46000

Step

F
re

q
u

en
cy

X0 < 2 AND X1 < 3 X0*X1^2 = 3 AND X1 < 9

X0^2*X1 = 3 9*(X0 + X0*X1 + X1^2) < 27 + 26*X1

5 > X0 AND X1 < 3 X0*X1^2 = 3

5*X0 < 14 AND X1 < 3 X0*X1^2 = 3 AND X1 < 3

X0*(44 + 1575*X0*X1) = 0 AND X1 < 9 5 > X0 AND X1 < 1

-(X0*(-3 + X0 + X0*(-3 + X0 + X1))) > X1 -(X0*(-3 + X0 + X1)) > X1

X0 < 2 AND X1 < 9 1 + X1 > 2*X0*X1 AND X1 < 9

9·(x1^2 + x0·(2 + x1)) < 54 + 26·x1

Fig. 2. Linear regression of the frequencies of recurrent subexpressions of Experiment
1, first run. The advocated action is 0.

not specified the variable domain (specifying the variable domain can lead to
simplifications too difficult to be performed). All these subexpressions represent
interesting information about the problem and are all subsets of “X0 + X1 < 5”.
Some of these subexpressions, like (i) and (v), are very specific but are not
included in the other subexpressions. This is the cause of their growth in spite
of their specificity. The subexpression “X0 < 2 AND X1 < 3” instead has a
decreasing trend because it is a subset of (iii), that has an increasing trend. The
subexpression “1+X1 > 2∗X0∗X1 AND X1 < 9 is not a subset of “X0+X1 <
5” so it does not represent a correct mapping for the action 0. In fact, the
subsexpression has a decreasing trend. Note that the union of the subexpressions
with an increasing trend listed before is almost a complete mapping between
variable values and the action 0: only “X0 = 0 AND X1 = 4” is not included in
any of these subexpressions but is included in (vii) “9∗ (X12 +X0 ∗ (2+X1)) <
54+26∗X1”. This last subexpression has an increasing trend but a low frequency
because it appears only after step 43000. Furthermore (vii) includes (ii), but (vii)
has not replaced (ii) because (vii) has appeared too late in the evolution. Figure 3
shows the areas represented by the subexpressions (ii) and (vii).

We now analyze the classifiers that advocate action 1 that represent the in-
equality “X0 + X1 > 4”. Figure 4 shows the trend of the frequencies of re-
current subexpressions. We have plotted the subexpressions with the highest
average frequency. Also in this case we note that subexpressions which repre-
sent interesting information about the problem have an increasing trend, while
useless subexpressions have a decreasing trend. The plot in Figure 5 reports the
results of linear regression applied to the same data. From this plot we extract

32 P.L. Lanzi et al.

Fig. 3. Subexpressions “9 ∗ (X12 + X0 ∗ (2 + X1)) < 54 + 26 ∗ X1” and “9 ∗ (X0 +
X0 ∗ X1 + X12) < 27 + 26 ∗ X1”

the following recurrent subexpressions with an increasing trend: (i) “6 > X1
AND X0 > 4”, (ii) “7 > X0 AND X1 ∗ (−3 + X0 + X1) > X1”, and (iii)
“X1 ∗ (−3 +X0+X1) > X1”. Note that the subexpression (iii) is equivalent to
“NOT (X1 = 0) AND X0 + X1 > 4”. Also in this case, all the recurrent subex-
pressions with an increasing trend represent interesting information about the
problem, none of them is wrong. The subexpression (ii) is contained in the subex-
pression (iii) but it is not replaced by it. Although it is possible to note that the
quick growth of the subexpression (ii) has stopped around step 15000, with the
emergence of the subexpression (iii), then (ii) has decreased and after step 30000
has an almost constant trend. So the more general subexpression (iii) has grown
hindering (ii). It is possible to note that the subexpression (iii) is contained in
many other subexpressions like “X0 > 0 AND X1∗ (−3+X0+X1) > X1 AND

Analysis of Population Evolution in Classifier Systems 33

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1000 6000 11000 16000 21000 26000 31000 36000 41000 46000

Step

F
re

q
u

en
cy

7 > X0 AND X1*(-3 + X0 + X1) > X1 6 > X1 AND X0 > 4

6 > X1 AND X0 > 8 X0>0 AND X1 > -(X1...

X1 > 4 X0 + X1 > 0 AND X0 > 6

X1*(-3 + X0 + X1) > X1 7 > X0 AND X1*(-9 + 2*X0 + X1) > X1

X0 > 0 AND X1*(-3 + X0 + X1) > X1 AND X1^3 > 2*X1^2 X0 > 4

X0 > 6 AND X1 > 8 AND X1*(-3 + X0 + X1) > X1 X0>0 AND X1 > -(X1^2...

X0 + 2*X1 > 4 AND X1*(-3 + X0 + X1) > X1 X0 > 6

Fig. 4. Trend of the frequencies of recurrent subexpressions of Experiment 1, first run.
The advocated action is 1.

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1000 6000 11000 16000 21000 26000 31000 36000 41000 46000

Step

F
re

q
u

en
cy

7 > X0 AND X1*(-3 + X0 + X1) > X1 6 > X1 AND X0 > 4

6 > X1 AND X0 > 8 X0>0 AND X1 > -(X1...

X1 > 4 X0 + X1 > 0 AND X0 > 6

X1*(-3 + X0 + X1) > X1 7 > X0 AND X1*(-9 + 2*X0 + X1) > X1

X0 > 0 AND X1*(-3 + X0 + X1) > X1 AND X1^3 > 2*X1^2 X0 > 4

X0 > 6 AND X1 > 8 AND X1*(-3 + X0 + X1) > X1 X0>0 AND X1 > -(X1^2...

X0 + 2*X1 > 4 AND X1*(-3 + X0 + X1) > X1 X0 > 6

Fig. 5. Linear regression of the frequencies of recurrent subexpressions of Experiment
1, first run. The advocated action is 1.

34 P.L. Lanzi et al.

X13 > 2 ∗ X12” that has a slightly increasing trend. Subexpressions much less
general, like “6 > X1 AND X0 > 8”, have a decreasing trend. In this case, the
union of the subexpressions with an increasing trend listed before is a complete
mapping between variable values and the action 1.

The second run we consider did not reach optimal solution in 50000 steps,
therefore all the populations contain some classifiers with a low fitness. We
first analyze the classifiers that advocate action 0 which represent the inequal-
ity “X0 + X1 < 5”. Figure 6 shows the trend of the frequencies of recurrent
subexpressions. We have plotted the subexpressions with the highest average
frequency. In this case none of the reported subexpressions represent interest-
ing information about the problem. Figure 7 reports the linear regression from
which it is possible to see that almost none of them has an increasing frequency
trend. Some subexpressions, like “X0 > 0”, disappear in some steps. That is be-
cause they disappear as a lone subexpression and they become a part of another
subexpression, i.e. now they are ANDed with other subexpressions. Further-
more, most of these subexpressions are wrong because they are not a subset
of “X0 + X1 < 5”: one notable example is the only subexpression with an in-
creasing trend, “X0 ∗ (44 + 1575 ∗ X0 ∗ X1) = 0”, that is equal to “X0 = 0”.
Furthermore this subexpression has an high oscillatory trend. To better under-
stand the behavior exhibited by the subexpressions reported in these plots we
analyzed the number of classifiers advocating each action. The average number
of classifiers that advocate action 0 is about 5, while for action 1 is 991 and in
the previous run was 247 for action 0 and 747 for action 1. It is easy to note
that the number of classifiers that advocate action 0 in this run is too small to
extract interesting information about subexpressions. Furthermore the system
has not reached optimal solution so some classifiers have a high prediction error.

We then analyze the classifiers that advocate action 1, which. They represent
the inequality “X0 + X1 > 4”. Figure 8 shows the trend of the frequencies of
recurrent subexpressions. Although the system has not reached optimal solution,
it is possible to see that subexpressions that represent interesting information
about the problem have an increasing trend, while useless subexpressions have
a decreasing trend. This is because the average number of classifiers for each
population that advocate action 1 is high, about 991. The plot in Figure 9
reports the linear regression. From this plot we extract the following recurrent
subexpressions with an increasing trend: (i) “X0 > 0 AND X1 > 7/2”, (ii)
“X0 > 4”, (iii) “X1 > 6”, and (iv) “X1 > 5”. Although the system has not
reached optimal solution, all the recurrent subexpressions with an increasing
trend listed before represent interesting information about the problem and none
of them is wrong. None of these subexpressions is contained in the other. Wrong
subexpressions or subexpressions that are subset of others have a decreasing
trend. For example, consider the subexpression “X1 > 7/2”: it has a decreasing
trend and it is wrong because it is not a subset of “X0 + X1 > 4”. Another
example, consider the subexpression “X0 > 7”: it has a decreasing trend and
it is a subset of the subexpression (ii). It is possible to note that the quick
growth of the subexpression “X0 > 7” has stopped around step 3000, with

Analysis of Population Evolution in Classifier Systems 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1000 6000 11000 16000 21000 26000 31000 36000 41000 46000

Step

F
re

q
u

en
cy

X0*(44 + 1575*X0*X1) = 0 X0 > 0

X0 > 4 X0 > 0 AND X1 > 7/2

X1 > 7/2 X0 > 7

X0 > 3 X1 > 6

7 > X1 AND X0 > 3 X1 > 5

X0 < X1 AND X0*(44 + 1575*X0*X1) = 0 18*X0*(7 + 3*X1^2)*(-1 + X0*X1^2) > X1

X0 + X1 > 0 X0 + X1 > 0 AND X0 > 0

Fig. 6. Trend of the frequencies of recurrent subexpressions of Experiment 1, second
run. The advocated action is 0.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1000 6000 11000 16000 21000 26000 31000 36000 41000 46000

Step

F
re

q
u

en
cy

X0*(44 + 1575*X0*X1) = 0 X0 > 0

X0 > 4 X0 > 0 AND X1 > 7/2

X1 > 7/2 X0 > 7

X0 > 3 X1 > 6

7 > X1 AND X0 > 3 X1 > 5

X0 < X1 AND X0*(44 + 1575*X0*X1) = 0 18*X0*(7 + 3*X1^2)*(-1 + X0*X1^2) > X1

X0 + X1 > 0 X0 + X1 > 0 AND X0 > 0

Fig. 7. Linear regression of the frequencies of recurrent subexpressions of Experiment
1, second run. The advocated action is 0.

36 P.L. Lanzi et al.

the emergence of the subexpression (ii), then the frequency of “X0 > 7” has
decreased. The union of the increasing subexpressions listed before represents
an almost complete mapping between variable values and the action 1, only
“X0 = 0 AND X1 = 5” is not contained in any of them.

5.2 Experiment 2: Multiplication of Two Variables

In the second experiment, we considered the learning of “X0 ∗ X1 > 7” with
X0, X1 ∈ N and X0, X1 ∈ [0, 9]. We run XCS with symbolic conditions with
a population of 3000 classifiers; 10 runs were performed, each one consisting
of 200000 learning problems; in each run we saved the population every 10000
steps, so at the end of each run we have a sequence of 20 populations. Here, we
analyze two runs: one is an example of successful convergence, one is an example
of a run which did not reach optimality.

The first run reaches optimality after about 20000 steps. We first analyze the
classifiers that advocate action 0 which represent the negation of the inequality
“X0 ∗ X1 > 7”, that is “X0 ∗ X1 ≤ 7”. Figure 10 shows the trend of the
subexpressions with the higher average frequency. The plots in Figure 10 show
that only one recurrent subexpression has an increasing trend. To better analyze
this we apply linear regression and obtain the plots in Figure 11. This plot
confirms what previously noted: only one subexpression “X1+7 ∗X0 ∗ (1+15 ∗
X1) < 832” has an increasing trend. Another subexpression has an increasing
trend but its max frequency is 0.008 so it is not relevant. Figure 12 shows the area
covered by “X1+7∗X0∗(1+15∗X1) < 832” and the curve “X0∗X1 = 7”, i.e.,
the only increasing subexpression represents a complete solution to the problem

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1000 6000 11000 16000 21000 26000 31000 36000 41000 46000

Step

F
re

q
u

en
cy

X0 > 0 AND X1 > 7/2 X0 > 4 X1 > 7/2

X0 > 7 X1 > 6 7 > X1 AND X0 > 4

X0 > 3 7 > X1 AND X0 > 3 X1 > 5

X0 > 4 AND X1 > 7/2 X0 > 0 X0 > 7 AND X0 > X1

X0 > 3 AND X1 > 7/2 X0 > 7 AND X1 > 7/2

Fig. 8. Trend of the frequencies of recurrent subexpressions of Experiment 1, second
run. The advocated action is 1.

Analysis of Population Evolution in Classifier Systems 37

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1000 6000 11000 16000 21000 26000 31000 36000 41000 46000

Step

F
re

q
u

en
cy

X0 > 0 AND X1 > 7/2 X0 > 4 X1 > 7/2

X0 > 7 X1 > 6 7 > X1 AND X0 > 4

X0 > 3 7 > X1 AND X0 > 3 X1 > 5

X0 > 4 AND X1 > 7/2 X0 > 0 X0 > 7 AND X0 > X1

X0 > 3 AND X1 > 7/2 X0 > 7 AND X1 > 7/2

Fig. 9. Linear regression of the frequencies of recurrent subexpressions of Experiment
1, second run. The advocated action is 1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10000 30000 50000 70000 90000 110000 130000 150000 170000 190000

Step

F
re

q
u

en
cy

X1 + 7*X0*(1 + 15*X1) < 832
X0 + 15*X0^2*X1 < 811/7
50*X0 > 15 + 35*X0*(-21 - X1)*X1*(21 + X1 - 7*X0*X1*(21 + X1)) AND X0 > 2
X0 > 15 + 7*X0 + 5*(21 + X1)^2*(-21 + 440*X1 + 21*X1^2) AND X0 > 2
X1 + 7*X0*(1 + 15*X1^2) < 832
11 + 2*X1 + 5*X1*(21 + X1)*(-6 + X0 + X1) < 0
X0 > 15 + 7*X0 + 5*(-21 - X1)*(21 + X1)*(21 + X1 - 7*X0*X1*(21 + X1)) AND X0 > 2
X1 + 7*X0*(1 + 15*X1^2) < 832 AND X1 < 3
X0 > 15 + 7*X0 + 5*(-21 - X1)*(21 + X1)*(21 + X1 - 7*X0*X1*(21 + X1))
X0 > 15 + 7*X0 + 5*(21 + X1)*(-6 + X0 + X1)*(7 + (-9 + 146*X0)*X1 + (-1 + 7*X0)*X1^2)
50*X0 > 15 + 35*X0*(-21 - X1)*X1*(21 + X1 - 7*X0*X1*(21 + X1)) AND X1 < 3
X0 > 15 + 7*X0 + 5*(21 + X1)*(-6 + X0 + X1)*(7 + (-9 + 146*X0)*X1 + (-1 + 7*X0)*X1^2) AND X0 > 2
X0*(440 + 49*X1 + 49*X0*(1 + 7*X1)) < 49 AND X1 < 3
X0 + X1 + X1*(21 + X1)*(6 - 7*X0*X1*(21 + X1)) > 7*(2 + X0)

Fig. 10. Trend of the frequencies of recurrent subexpressions of Experiment 2, first
run. The advocated action is 0.

for action 0. From the plot it is also possible to note that, when X0, X1 ∈ N,
“X1+7∗X0∗(1+15∗X1) < 832” is equivalent to “X0∗X1 ≤ 7”. Figure 12 also
shows the area of the subexpression “X0+15∗X02∗X1 < 811/7” which is more
specific than “X1 + 7 ∗ X0 ∗ (1 + 15 ∗ X1) < 832”. In fact, the former condition

38 P.L. Lanzi et al.

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

10000 30000 50000 70000 90000 110000 130000 150000 170000 190000

Step

F
re

q
u

en
cy

X1 + 7*X0*(1 + 15*X1) < 832
X0 + 15*X0^2*X1 < 811/7
50*X0 > 15 + 35*X0*(-21 - X1)*X1*(21 + X1 - 7*X0*X1*(21 + X1)) AND X0 > 2
X0 > 15 + 7*X0 + 5*(21 + X1)^2*(-21 + 440*X1 + 21*X1^2) AND X0 > 2
X1 + 7*X0*(1 + 15*X1^2) < 832
11 + 2*X1 + 5*X1*(21 + X1)*(-6 + X0 + X1) < 0
X0 > 15 + 7*X0 + 5*(-21 - X1)*(21 + X1)*(21 + X1 - 7*X0*X1*(21 + X1)) AND X0 > 2
X1 + 7*X0*(1 + 15*X1^2) < 832 AND X1 < 3
X0 > 15 + 7*X0 + 5*(-21 - X1)*(21 + X1)*(21 + X1 - 7*X0*X1*(21 + X1))
X0 > 15 + 7*X0 + 5*(21 + X1)*(-6 + X0 + X1)*(7 + (-9 + 146*X0)*X1 + (-1 + 7*X0)*X1^2)
50*X0 > 15 + 35*X0*(-21 - X1)*X1*(21 + X1 - 7*X0*X1*(21 + X1)) AND X1 < 3
X0 > 15 + 7*X0 + 5*(21 + X1)*(-6 + X0 + X1)*(7 + (-9 + 146*X0)*X1 + (-1 + 7*X0)*X1^2) AND X0 > 2
X0*(440 + 49*X1 + 49*X0*(1 + 7*X1)) < 49 AND X1 < 3
X0 + X1 + X1*(21 + X1)*(6 - 7*X0*X1*(21 + X1)) > 7*(2 + X0)

Fig. 11. Linear regression of the frequencies of recurrent subexpressions of Experiment
2, first run. The advocated action is 0.

Fig. 12. Curve “X0∗X1 = 7” and subexpressions “X1+7∗X0∗ (1+15∗X1) < 832”
and “X0 + 15 ∗ X02 ∗ X1 < 811/7”

has an increasing trend for the first 30000 steps until the more general condition
appears; then its frequency remains constant and after step 50000 it decreases
while the frequency of the more general “X1 + 7 ∗ X0 ∗ (1 + 15 ∗ X1) < 832”
increases.

Then, we analyze the classifiers that advocate action 1 which represent the
inequality “X0 ∗ X1 > 7”. Figure 13 shows the trend of recurrent subexpressions
in the population. There is a subexpression that has a much higher frequency
and many subexpressions that behave similarly such as “16 ∗ X0 ∗ X1 >

Analysis of Population Evolution in Classifier Systems 39

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10000 30000 50000 70000 90000 110000 130000 150000 170000 190000

Step

F
re

q
u

en
cy

X0*(-7 + 16*X1) > 7*(9 + X1)
16*X0*X1 > 71 + 7*X0 + 8*X1
16*X0*X1 > 71 + 7*X0 + 6*X1
14*X0*X1 > 71 + 7*X0 + 8*X1
14*X0*X1 > 71 + 6*X0 + 7*X1
X0 > 15 + 7*X0 - 40*X0*X1^2*(21 + X1)*(7 - (9 + X0)*X1 + (-13 + 2*X0)*X1^2 + 2*X1^3) AND X0 > 2
40*X0*X1^2*(21 + X1)*(7 - (9 + X0)*X1 + (-7 + X0)*X1^2 + X1^3) > 8 + 7*X0 + X1
7*X0*X1 > 31 + 3*X0 + 3*X1
X0 > 15 + 7*X0 + 280*X0^3*X1*(-7 + 8*X0*X1 - 4*X1^3) AND X0 > 2
X0 > 15 + 7*X0 - 40*X0*(-21 - X1)*X1^2*(X0 - 3*X1^2*(-6 + X0 + X1)) AND X0 > 2
16*X0*X1 > 71 + 6*X0 + 7*X1
14*X0*X1 > 71 + 7*X0 + 8*X1 AND X0 > -8*X0*X1^2
14*X0*X1 > 86 + 13*X0 + 7*X1 AND X0 > -8*X0*X1^2
X0 > 15 + 7*X0 + 40*X0*X1^2*(21 + X1)*(-7 + (9 + X0)*X1 + X1^2 + 168*X0*X1^3 + 8*X0*X1^4) AND X0 > 2

Fig. 13. Trend of the frequencies of recurrent subexpressions of Experiment 2, first
run. The advocated action is 1.

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

10000 30000 50000 70000 90000 110000 130000 150000 170000 190000

Step

F
re

q
u

en
cy

X0*(-7 + 16*X1) > 7*(9 + X1)
16*X0*X1 > 71 + 7*X0 + 8*X1
16*X0*X1 > 71 + 7*X0 + 6*X1
14*X0*X1 > 71 + 7*X0 + 8*X1
14*X0*X1 > 71 + 6*X0 + 7*X1
X0 > 15 + 7*X0 - 40*X0*X1^2*(21 + X1)*(7 - (9 + X0)*X1 + (-13 + 2*X0)*X1^2 + 2*X1^3) AND X0 > 2
40*X0*X1^2*(21 + X1)*(7 - (9 + X0)*X1 + (-7 + X0)*X1^2 + X1^3) > 8 + 7*X0 + X1
7*X0*X1 > 31 + 3*X0 + 3*X1
X0 > 15 + 7*X0 + 280*X0^3*X1*(-7 + 8*X0*X1 - 4*X1^3) AND X0 > 2
X0 > 15 + 7*X0 - 40*X0*(-21 - X1)*X1^2*(X0 - 3*X1^2*(-6 + X0 + X1)) AND X0 > 2
16*X0*X1 > 71 + 6*X0 + 7*X1
14*X0*X1 > 71 + 7*X0 + 8*X1 AND X0 > -8*X0*X1^2
14*X0*X1 > 86 + 13*X0 + 7*X1 AND X0 > -8*X0*X1^2
X0 > 15 + 7*X0 + 40*X0*X1^2*(21 + X1)*(-7 + (9 + X0)*X1 + X1^2 + 168*X0*X1^3 + 8*X0*X1^4) AND X0 > 2

Fig. 14. Linear regression of the frequencies of recurrent subexpressions of Experiment
2, first run. The advocated action is 1.

71+7∗X0+8∗X1” and “16∗X0∗X1 > 71+7∗X0+6∗X1”. Figure 14 reports
the linear model extracted from the same data. From this plots we identify two
subexpressions with an increasing trend: (i) “X0∗ (−7+16∗X1) > 7∗ (9+X1)”,

40 P.L. Lanzi et al.

Fig. 15. Curve “X0∗X1 = 7”and subexpressions “X0∗(−7+16∗X1) > 7∗(9+X1)”,
“16 ∗ X0 ∗ X1 > 71 + 7 ∗ X0 + 6 ∗ X1”, “16 ∗ X0 ∗ X1 > 71 + 7 ∗ X0 + 6 ∗ X1”, and
“14 ∗ X0 ∗ X1 > 71 + 7 ∗ X0 + 8 ∗ X1”

and (ii) “16 ∗ X0 ∗ X1 > 71 + 7 ∗ X0 + 6 ∗ X1”. The two subexpressions
are very similar, (i) is equal to “16 ∗ X0 ∗ X1 > 63 + 7 ∗ X0 + 7 ∗ X1”, and
to many others subexpressions but they are the only ones with an increasing
trend of the frequency. Figure 15 shows the areas of (i), (ii) and other two
subexpressions with a very similar form, in addition to the curve “X0 ∗ X1 = 7”.
From Figure 15 we note that (i) is the most general and, given that X0, X1 ∈ N,

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10000 30000 50000 70000 90000 110000 130000 150000 170000 190000

Step

F
re

q
u

en
cy

X0*(440 + 49*X1 + 49*X0*(1 + 7*X1)) < 49
147 + X0 + 7*X1 > 0 AND 5*X0*(8 + 9*X1) < 286 + 315*X1 AND X1 < 3/2
15 + 280*X0*X1 + X1^2 + 1120*X0^3*X1^3 < 9*X0 + 1120*X0^2*X1^2 + 2*X0*X1^3 + 2*X1^4
X0*(2 + 35*X0) < 832/3 AND X1 < 4
147 + X0 + 7*X1 > 0 AND 7*X0 + 735*X0^2 + X1 < 832 AND 8*X0 > X1
X0 = 2 AND X1 < 4
X0 > 15 + 7*X0 + 5*(21 + X1)^2*(-21 + 440*X1 + 21*X1^2)
5*X0*(8 + 9*X1) < 286 + 315*X1 AND X1 < 3/2
147 + X0 + 7*X1 > 0 AND 5*X0*(8 + 9*X1) < 286 + 315*X1 AND X0 > 2 AND X1 < 3/2
147 + X0 + 7*X1 > 0 AND 147 + X0 + 7*X1 > 0 AND 5*X0*(8 + 9*X1) < 286 + 315*X1 AND X1 < 3/2
147 + X0 + 7*X1 > 0 AND 147 + X0 + 7*X1 > 0 AND 5*X0*(8 + 9*X1) < 286 + 315*X1 AND X0 > 2 AND X1 < 3/2
X0 = 2 AND X1 < 4 AND X1 = X0
7*X0 + 735*X0^2 + X1 < 832 AND 8*X0 > X1
7*X0 + 735*X0^2 + X1 < 832

Fig. 16. Trend of the frequencies of recurrent subexpressions of Experiment 2, second
run. The advocated action is 0.

Analysis of Population Evolution in Classifier Systems 41

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

10000 30000 50000 70000 90000 110000 130000 150000 170000 190000

Step

F
re

q
u

en
cy

X0*(440 + 49*X1 + 49*X0*(1 + 7*X1)) < 49
147 + X0 + 7*X1 > 0 AND 5*X0*(8 + 9*X1) < 286 + 315*X1 AND X1 < 3/2
15 + 280*X0*X1 + X1^2 + 1120*X0^3*X1^3 < 9*X0 + 1120*X0^2*X1^2 + 2*X0*X1^3 + 2*X1^4
X0*(2 + 35*X0) < 832/3 AND X1 < 4
147 + X0 + 7*X1 > 0 AND 7*X0 + 735*X0^2 + X1 < 832 AND 8*X0 > X1
X0 = 2 AND X1 < 4
X0 > 15 + 7*X0 + 5*(21 + X1)^2*(-21 + 440*X1 + 21*X1^2)
5*X0*(8 + 9*X1) < 286 + 315*X1 AND X1 < 3/2
147 + X0 + 7*X1 > 0 AND 5*X0*(8 + 9*X1) < 286 + 315*X1 AND X0 > 2 AND X1 < 3/2
147 + X0 + 7*X1 > 0 AND 147 + X0 + 7*X1 > 0 AND 5*X0*(8 + 9*X1) < 286 + 315*X1 AND X1 < 3/2
147 + X0 + 7*X1 > 0 AND 147 + X0 + 7*X1 > 0 AND 5*X0*(8 + 9*X1) < 286 + 315*X1 AND X0 > 2 AND X1 < 3/2
X0 = 2 AND X1 < 4 AND X1 = X0
7*X0 + 735*X0^2 + X1 < 832 AND 8*X0 > X1
7*X0 + 735*X0^2 + X1 < 832

Fig. 17. Linear regression of the frequencies of recurrent subexpressions of Experiment
2, second run. The advocated action is 0.

it is equal to “X0 ∗ X1 > 7”. The subexpression (ii) is more specific, but its
frequency grows very slowly compared to the subexpression (i). The other two
subexpressions represented are “16 ∗ X0 ∗ X1 > 71 + 7 ∗ X0 + 6 ∗ X1”, and
“14 ∗ X0 ∗ X1 > 71 + 7 ∗ X0 + 8 ∗ X1”. The frequencies of the last two
subexpressions grow in the first steps and then decreases in favor of more general

Fig. 18. Curve “X0 ∗ X1 = 7” and subexpressions that have an increasing frequency
trend. Experiment 2, second run, advocated action 0.

42 P.L. Lanzi et al.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10000 30000 50000 70000 90000 110000 130000 150000 170000 190000

Step

F
re

q
u

en
cy

X0 > 2 AND X1 > 2
2*X1*(5 + X0 + X1) > 71 + 7*X0 AND 49*X0^2 > 71 + 7*X0 + 8*X1
5*X1^2*(-7 + (8 + X0)*X1 + X1^2) > 71 + 7*X0 + 8*X1 AND X0 > 4
5*X0*(8 + 9*X1) < 286 + 315*X1 AND X0 > 2 AND X1 > 2
2*X1*(5 + X0 + X1) > 71 + 7*X0 AND X0 > 2
(9 + X0)*X1 > 63 + 8*X0 AND X0 > -8*X0*X1^2
5*X1^2*(-7 + (8 + X0)*X1 + X1^2) > 71 + 7*X0 + 8*X1 AND X0 > 5
2*X1*(5 + X0 + X1) > 71 + 7*X0 AND 49*X0^2 > 71 + 7*X0 + 8*X1 AND 9*X0…
5*X1^2*(-7 + (8 + X0)*X1 + X1^2) > 71 + 7*X0 + 8*X1 AND X0 > 2
147 + X0 + 7*X1 > 0 AND X0 > 2 AND X1 > 2
2*X1*(5 + X0 + X1) > 71 + 7*X0 AND 5*X0*(8 + 9*X1) < 286 + 315*X1 AND X0 > 2
X0 > -8*X0*X1^2 AND X1 = 9
2*X1*(5 + X0 + X1) > 71 + 7*X0 AND 49*X0^2 > 71 + 7*X0 + 8*X1 AND X0*(2 + 35*X0) < 832/3
2*X1*(5 + X0 + X1) > 71 + 7*X0 AND 49*X0^2 > 71 + 7*X0 + 8*X1 AND 5*X0*(8 + 9*X1) < 286 + 315*X1

Fig. 19. Trend of the frequencies of recurrent subexpressions of Experiment 2, second
run. The advocated action is 1.

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

10000 30000 50000 70000 90000 110000 130000 150000 170000 190000

Step

F
re

q
u

en
cy

X0 > 2 AND X1 > 2
2*X1*(5 + X0 + X1) > 71 + 7*X0 AND 49*X0^2 > 71 + 7*X0 + 8*X1
5*X1^2*(-7 + (8 + X0)*X1 + X1^2) > 71 + 7*X0 + 8*X1 AND X0 > 4
5*X0*(8 + 9*X1) < 286 + 315*X1 AND X0 > 2 AND X1 > 2
2*X1*(5 + X0 + X1) > 71 + 7*X0 AND X0 > 2
(9 + X0)*X1 > 63 + 8*X0 AND X0 > -8*X0*X1^2
5*X1^2*(-7 + (8 + X0)*X1 + X1^2) > 71 + 7*X0 + 8*X1 AND X0 > 5
2*X1*(5 + X0 + X1) > 71 + 7*X0 AND 49*X0^2 > 71 + 7*X0 + 8*X1 AND 9*X0…
5*X1^2*(-7 + (8 + X0)*X1 + X1^2) > 71 + 7*X0 + 8*X1 AND X0 > 2
147 + X0 + 7*X1 > 0 AND X0 > 2 AND X1 > 2
2*X1*(5 + X0 + X1) > 71 + 7*X0 AND 5*X0*(8 + 9*X1) < 286 + 315*X1 AND X0 > 2
X0 > -8*X0*X1^2 AND X1 = 9
2*X1*(5 + X0 + X1) > 71 + 7*X0 AND 49*X0^2 > 71 + 7*X0 + 8*X1 AND X0*(2 + 35*X0) < 832/3
2*X1*(5 + X0 + X1) > 71 + 7*X0 AND 49*X0^2 > 71 + 7*X0 + 8*X1 AND 5*X0*(8 + 9*X1) < 286 + 315*X1

Fig. 20. Linear regression of the frequencies of recurrent subexpressions of Experiment
2, second run. The advocated action is 1.

subexpressions like (i). These plots confirm what noted in the previous experi-
ments: the subexpression with an increasing frequency trend, (i) and (ii), repre-
sent a complete solution for action 1.

Analysis of Population Evolution in Classifier Systems 43

Fig. 21. Curve “X0 ∗ X1 = 7” and subexpressions that have an increasing frequency
trend. Experiment 2, second run, advocated action 1.

The second run does not reach optimality, Therefore, all the evolved popula-
tions contain classifiers with a low fitness. We first analyze the classifiers that
advocate action 0 representing the inequality “X0 ∗ X1 ≤ 7”. Figure 16 shows
the trend of the recurrent subexpressions with the higher average frequency;
Figure 17 reports the results of the linear regression applied to the same data.
There are four recurrent subexpressions with an increasing trend: one is “X0 = 2
AND X1 < 4”, the areas of the other three subexpressions are reported in Fig-
ure 18. The four subexpressions do not represent “X0 ∗ X1 ≤ 7” completely
but they are close. In fact, with more learning problems, the population would
probably converge to optimality; but when the learning was stop, the maximally
accurate maximally general solution was not present in the population. We then
analyze the classifiers that advocate action 1 which represent the inequality
“X0 ∗ X1 > 7”. Figure 19 shows the trend of the recurrent subexpressions with
the higher average frequency. Analyzing the linear regression of the frequencies
reported in Figure 20 we extract 5 subexpressions with an increasing frequency
trend. The areas represented by these subexpressions are reported in Figure
21. Note that the five subexpressions do not represent the complete solution
to the problem for action 1. As before, XCS was stopped before it could reach
optimality. However the five subexpressions with an increasing trend represent
interesting information about the problem.

6 Summary

We have introduced a method to analyze the evolution of XCS with symbolic
conditions. We have applied our approach to analyze two experiments involving

44 P.L. Lanzi et al.

the learning of a simple numeric expression. By applying the proposed method,
we have been able to show how XCS with GP-based conditions, XCSGP, builds
up an optimal solution by favoring the evolution of good subexpressions that are
useful with respect to the target problem. Our approach can also be used in a
constructive way: after the frequent subexpressions have been identified, they
can also be used to guide the generation of better offspring [10].

References

1. Booker, L.B.: Representing Attribute-Based Concepts in a Classifier System. In:
Gregory, J.E. (ed.) Proceedings of the First Workshop on Foundations of Genetic
Algorithms (FOGA 1991), pp. 115–127. Morgan Kaufmann, San Mateo (1991)

2. Dignum, S., Poli, R.: Generalisation of the limiting distribution of program sizes
in tree-based genetic programming and analysis of its effects on bloat. In: GECCO
2007: Proceedings of the 9th annual conference on Genetic and evolutionary com-
putation, pp. 1588–1595. ACM Press, New York (2007)

3. Koza, J.R.: Hierarchical automatic function definition in genetic programming. In:
Whitley, L.D. (ed.) Foundations of Genetic Algorithms 2, Vail, Colorado, USA,
24–29, 1992, pp. 297–318. Morgan Kaufmann, San Francisco (1992)

4. Lanzi, P.L.: Extending the Representation of Classifier Conditions Part I: From
Binary to Messy Coding. In: Banzhaf, W., et al. (ed.) Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 1999), Orlando (FL), July
1999, pp. 337–344. Morgan Kaufmann, San Francisco (1999)

5. Lanzi, P.L.: Mining interesting knowledge from data with the XCS classifier system.
In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M.,
Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2001), 7-11 July
2001, pp. 958–965. Morgan Kaufmann, San Francisco (2001)

6. Lanzi, P.L., Perrucci, A.: Extending the Representation of Classifier Conditions
Part II: From Messy Coding to S-Expressions. In: Banzhaf, W., et al. (ed.) Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999),
Orlando (FL), July 1999, pp. 345–352. Morgan Kaufmann, San Francisco (1999)

7. Luke, S., Panait, L.: A comparison of bloat control methods for genetic program-
ming. Evolutionary Computation 14, 309–344 (2006)

8. Poli, R.: A simple but theoretically-motivated method to control bloat in genetic
programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa,
E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg (2003)

9. Wolfram Research. Mathematica 5, http://www.wolfram.com
10. Rocca, S., Solari, S.: Building blocks analysis and exploitation in genetic program-

ming. Master’s thesis (April 2006) Master thesis supervisor: Prof. Pier Luca Lanzi.
Electronic version available from, http://www.dei.polimi.it/people/lanzi

11. Schaffer, J.D. (ed.): Proceedings of the 3rd International Conference on Genetic
Algorithms (ICGA 1989), George Mason University, June 1989. Morgan Kaufmann,
San Francisco (1989)

12. Schuurmans, D., Schaeffer, J.: Representational Difficulties with Classifier Systems.
In: Schaffer (ed.) [11], pp. 328–333,
http://www.cs.ualberta.ca/∼jonathan/Papers/Papers/classifier.ps

13. Sen, S.: A Tale of two representations. In: Proc. 7th International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert Sys-
tems, pp. 245–254 (1994)

http://www.wolfram.com
http://www.dei.polimi.it/people/lanzi
http://www.cs.ualberta.ca/~jonathan/Papers/Papers/classifier.ps

Analysis of Population Evolution in Classifier Systems 45

14. Shu, L., Schaeffer, J.: VCS: Variable Classifier System. In: Schaffer (ed.) [11], pp.
334–339, http://www.cs.ualberta.ca/∼jonathan/Papers/Papers/vcs.ps

15. Wilson, S.W.: Get real! XCS with continuous-valued inputs. In: Booker, L., Forrest,
S., Mitchell, M., Riolo, R.L. (eds.) Festschrift in Honor of John H. Holland, pp.
111–121. Center for the Study of Complex Systems (1999),
http://prediction-dynamics.com/

16. Wilson, S.W.: Mining Oblique Data with XCS. In: Lanzi, P.L., Stolzmann, W.,
Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996. Springer, Heidelberg
(2001)

17. Wilson, S.W.: Mining oblique data with XCS. In: Lanzi, P.L., Stolzmann, W.,
Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 158–176. Springer,
Heidelberg (2001)

http://www.cs.ualberta.ca/~jonathan/Papers/Papers/vcs.ps
http://prediction-dynamics.com/

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 46–56, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Investigating Scaling of an Abstracted LCS Utilising
Ternary and S-Expression Alphabets

Charalambos Ioannides and Will Browne

Cybernetics, University of Reading, Reading, UK
siu03ci@rdg.ac.uk

w.n.browne@rdg.ac.uk

Abstract. Utilising the expressive power of S-Expressions in Learning Classi-
fier Systems often prohibitively increases the search space due to increased
flexibility of the encoding. This work shows that selection of appropriate S-
Expression functions through domain knowledge improves scaling in problems,
as expected. It is also known that simple alphabets perform well on relatively
small sized problems in a domain, e.g. ternary alphabet in the 6, 11 and 20 bit
MUX domain. Once fit ternary rules have been formed it was investigated
whether higher order learning was possible and whether this staged learning fa-
cilitated selection of appropriate functions in complex alphabets, e.g. selection
of S-Expression functions. This novel methodology is shown to provide com-
pact results (135-MUX) and exhibits potential for scaling well (1034-MUX),
but is only a small step towards introducing abstraction to LCS.

1 Introduction

Although the scalability of Learning Classifier System [1][2] technique is good (70
Multiplexer MUX problem solvable) the increased dimensionality eventually restricts
the technique (135 MUX problem is difficult to solve). The search space increase is
inherent in the problem and the representative space of the alphabet. Introducing S-
Expressions as an LCS may reduce the problem search space by mapping to a differ-
ent problem description, but this will be at the cost of increasing the mappings avail-
able and hence increasing the representative search space.

Learning Classifier Systems (LCS) were originally designed as artificial cognitive
systems [3], but are now established as an effective machine learning technique.
LCS’s power lies in combining Reinforcement Learning and Evolutionary Algorithms
in order to create and promote a set of production (IF condition THEN action) rules.
Generalisation is core to LCS, but it is hypothesized here that the learning of concept-
based knowledge related to experiences can be improved by developing abstraction
methods.

Generalisation enables a LCS to ignore unimportant conditions in environmental
messages – similar to humans storing just the key features of an episode in memory.
However, it is postulated that humans also abstract higher order patterns from these
stored episodes into semantic memory, which is not currently addressed in LCS.

 Investigating Scaling of an Abstracted LCS Utilising Ternary 47

The benefit of higher order patterns is in scaling within a problem domain as they
capture higher order features, e.g. the importance of address bits in the MUX problem
domain. This work attempts to mimic human behaviour by generating features from
small problem solutions, through utilising appropriate alphabets to facilitate abstrac-
tion, which will assist in learning larger scale problems. More practically; it is to be
investigated if domain-relevant functions will assist learning of multiplexers both in
the sense of faster learning and smaller s-expressions. Without domain knowledge the
appropriate function(s) for a problem need to be autonomously discovered.

It is to be determined whether it is better to discover the most appropriate functions
through generalization (learning directly on the messages) or through abstraction
(learning on the generalized rules learnt in a simpler alphabet). Abstraction is thus a
higher order process as it involves two stages.

The widely used LCS, XCS (Accuracy-based Fitness LCS) [4], has been well
tested [5][6]. XCS scales well on the MUX problems as the learning is polynomial
complexity [9]. However, XCS still struggles to solve the 135-MUX problem due to
large processing requirements whereas humans are capable of understanding the
concept behind all MUX problems. The aim of this work is to develop a method
based on abstraction so that XCS scales to increasing sized problems of similar
type.

2 Background

In the classical XCS framework [2] the classifiers that represent the environment use
ternary alphabet {0, 1, #} and the assignment of an Action to a classifier is inflexible
(i.e. preset and unchanging throughout the classifier’s ‘life’). The use of the # (don’t
care) symbol further limits the potential for flexibility since it is simply a positional
relation acting on a specific position within the classifier’s condition string rather than
between its conditions. It acts as the OR function (i.e. ‘0’ OR ‘1’). In effect this (#)
facilitates the important feature of generalization in the XCS paradigm.

The main characteristics that any single classifier possesses are:

1. Condition part C – lC }#,1,0{∈

2. Action part A – }1,0{∈A

3. Reward Prediction R
4. Estimated Error ε
5. Fitness F

The Multiplexer problem, see figure 1, is an effective measure for classifier sys-
tems due to the properties of multi-modality, scalability and epistasis it possesses. In
short, it is because the correct action of a classifier is a function of a function inside
its environmental encoding.

Illustrating this above, the correct output is taken from the data bits according to
the index dictated by a set of address bits. If the number of address bits is k=4 the
environment’s string length is l=k+2k = 20 forming the 20-MUX problem.

48 C. Ioannides and W. Browne

Fig. 1. Multiplexer problem

3 Design of the S-XCS System

The XCS framework was developed in this work to enable abstraction, see figure 2.

XCS standard

S_XCS

No abstraction

Raw data:e.g. 6 MUX > Condition : Action
110001 : 1
000111 : 0 ...

Accurate, maximally General Set:
AGS

000### : 0
001### : 1 ...

Abstracted rule:
VALUEAT(ADDROF 5 4)

Generalised rules:
(OR (AND (NOT 2) 0) (AND 1 2))
VALUEAT (ADDROF 5 4)

or

 S_XCS1 abstraction

Fig. 2. Developed framework for investigating abstraction

The episodes were learnt as in a classical XCS to produce a maximally general
accurate population, termed Accurate, maximally General Set (AGS). This AGS was
then the environment where each generalised rule was an input message passed to the
S-Expression based XCS, termed S-XCS1. This was contrasted with a single popula-
tion version (without AGS) that directly learnt from the raw environmental messages,
again utilising the S-Expression alphabet, in order to discover any benefits of
abstraction.

Following the S-Expression paradigm [7][8] the classifiers’ building blocks con-
sists of either non-terminals (i.e. functions) or terminals (i.e. variables or constants),
see figure 3. These can be tailored to the domain, e.g. VALUEAT which returns the
bit value of a position within the classifier and ADDROF which returns the integer
counterpart of a string of bits. Firstly, tailored functions are tested to confirm (or oth-
erwise) that pre-solving the problem with domain knowledge is possible in this set-
ting. Secondly, it is to be tested whether the most appropriate tailored functions can
be identified automatically. Tailored functions rely upon domain knowledge, which
reduces the applicability of the technique unless used with other general functions.

 Investigating Scaling of an Abstracted LCS Utilising Ternary 49

Fig. 3. Backus–Naur form grammar that generates classifiers

• AND, OR, NOT – Binary functions; the first two receive two arguments and the
last one only one. Arguments can be either binary values directly from the leaf
nodes of the condition trees, or integers (values >1 are treated as the binary ‘true’
or ‘1’) if the functions are located in the middle of the trees.

• PLUS, MINUS, MULTIPLY, DIVIDE, POWEROF – Arithmetic functions; they
all receive two arguments apart from the final one that receives only one argu-
ment. These arguments can be either binary values or integers as above. The
POWEROF function treats its argument as an exponent of base two.

• VALUEAT, ADDROF – Domain specific functions; VALUEAT receives one
argument (pointer to an address, which is capped to the string length) and returns a
value (environmental ‘value’ at the referenced address). ADDROF receives two
arguments symbolising the beginning and end (as positions in the environmental
string) for specifying the binary string to be converted to an integer. There is no
ordering as the lowest index is considered the least significant bit and the highest
index as the most significant bit.

There is no match set using S-Expressions since the classifiers represent a com-
plete solution by using variables and not predetermined bit strings with fixed actions.
Thus the actions are computed (similar to piece-wise linear approximators the action
to be performed is a function of the conditions). It is noted that VALUEAT points to a
value and that it is impossible to consistently point to an incorrect value, which does
not favour the low prediction classifiers that occur in a classical XCS.

Other methods were also appropriately altered, e.g. Classifier Covering or com-
pletely removed, e.g. Subsumption Deletion. Coverage was triggered when the aver-
age fitness was below 0.5 in an action set and created a random valid tree. In initial
tests numerosity tended to be small due to the diversity of the S-Expressions, which
tended to distort fitness measurements. Thus, numerosity was not utilised in the fit-
ness update and absolute accuracy was used as fitness instead of the relative accuracy.

<cond> := AND <cond> <cond> |
 OR <cond> <cond> |
 NOT <cond> |
 PLUS <cond> <cond> |
 MINUS <cond> <cond> |
 MULTIPLY <cond> <cond> |
 DIVIDE <cond> <cond> |
 POWEROF <cond> <cond> |
 VALUEAT <cond> <cond> |
 ADDROF <cond> <cond> |
 <var>

<var> := “0” | “1” |“2” | ….. “k”

50 C. Ioannides and W. Browne

The update function, including accuracy-based fitness and action selection in ex-
ploit trials are the same as in classical XCS.

4 Results

The first system created was the S_XCS, which uses only three Binary Functions
(AND, OR, NOT). The Covering procedure created one classifier per invocation. The
second system was the S_XCS1 which was created in order to investigate the effect of
tailored building blocks (e.g. ADDROF, VALUEAT) and to determine if an increased
variety of functions causes bloating or prevents learning.

0

100

200

300

400

500

600

700

800

900

1000

0 2000 4000 6000 8000

Epochs

P
er

fo
rm

an
ce

3MUX R
6MUX R

Fig. 4. Performance - the weighted average of 10 runs of the average fitness of the last 50
epochs (exploit trials) of the population - of S_XCS on 3-MUX & 6-MUX problem

System parameters are learning rate β=0.2, initial error ε=0.5, accuracy parameters
α=0.1, ε0=10, rimm=1000, ν=5, GA threshold θGA=25, experience deletion threshold
θdel=20, mutation rate µ=0.01, tournament size τ=0.2, crossover possibility χ=1, popu-
lation size N=400 [2].

Table 1. S_XCS on 3-MUX Optimal Population extract

Condition Length
(OR (AND (NOT 2) 0) (AND 1 2)) 8
(OR (AND (AND (NOT 2) 0) 0) (AND 1 2)) 10

S_XCS discovers the Disjunctive Normal Form of the 3-MUX problem (see figure 4
& table 1), but fails to scale. However, S_XCS1 does scale, see figures 5 & 6.

 Investigating Scaling of an Abstracted LCS Utilising Ternary 51

0

100

200

300

400

500

600

700

800

900

1000

0 1000 2000 3000 4000 5000 6000 7000 8000

Epochs

P
er

fo
rm

an
ce

3MUX R
6MUX R
135MUX R

Fig. 5. S_XCS1 without AGS on 3-MUX, 6-MUX & 135-MUX problem (8000 epochs)

0
100
200
300
400
500
600
700
800
900

1000

0 10000 20000 30000 40000 50000 60000

Epochs

P
er

fo
rm

an
ce

Reward Error Population

Fig. 6. S_XCS1 without AGS on 135-MUX problem (65000 epochs)

The system will discover the most compact functions suited to the domain, pro-
vided sufficient time is allowed; see figure 6 & table 2. This compaction time was
greatly reduced by the use of abstraction, compare figure 6 with 8, where generalisa-
tion is accomplished first using the ternary alphabet (where possible) and then higher
order knowledge is gained by training on the optimum set, see figure 8.

It was hypothesised that the results of training on small sized domains could aid the
selection of tailored functions in larger domains. A limited set of the functions most
suited to the MUX problem domain was discovered on solvable domains, e.g. MUX
< 70. These were utilised in S_XCS1, but the results of did not provide significant
advantage, comparing figure 7 with figure 5.

52 C. Ioannides and W. Browne

Table 2. S_XCS1 without AGS on 3-MUX. 6-MUX, 135-MUX

MUX Condition Length
3 VALUEAT AND 2 2 4
3 VALUEAT ADDROF 2 2 4
3 VALUEAT ADDROF POWEROF 2 2 5
3 VALUEAT OR POWEROF 2 2 5
6 VALUEAT ADDROF 5 4 4
6 VALUEAT ADDROF 4 5 4
6 VALUEAT ADDROF 4 POWEROF 3 5
6 VALUEAT ADDROF 4 POWEROF POWEROF 4 6
135 VALUEAT ADDROF 128 POWEROF 47 5
135 VALUEAT ADDROF POWEROF 7 POWEROF 36 6
135 VALUEAT ADDROF 128 MULTIPLY 7 22 6
135 VALUEAT ADDROF MULTIPLY 27 75 128 6
135 VALUEAT ADDROF MULTIPLY 27 27 128 6

The known ternary solution, AGS, was tested as the optimum set can not be learnt
practically for >135 MUX. Thus, this tests the potential scalability of S-Expressions
when used for higher order learning, rather than the ability to learn. The system scales
well, see figure 8, with the best discovered solutions shown in tables 3 (highest fitness
in bold). Unnecessary functions, such as POWEROF, were less likely to appear with
abstraction than without, see table 2. An example of a maximally compact rule pro-
duced was for the 135 MUX, where the value returned is that addressed by the bit
string between the terminals128-134.

0

100

200

300

400

500

600

700

800

900

1000

0 1000 2000 3000 4000 5000 6000 7000 8000

Epochs

P
er

fo
rm

an
ce

3MUX R

6MUX R

135MUX R

1034MUX R

Fig. 7. S_XCS1 without AGS on 3-MUX, 6-MUX, 135-MUX & 1034-MUX problem, identi-
fied tailored functions

 Investigating Scaling of an Abstracted LCS Utilising Ternary 53

0

100

200

300

400

500

600

700

800

900

1000

0 2000 4000 6000 8000

Epochs

P
er

fo
rm

an
ce

3MUX R
6MUX R
135MUX R
1034MUX R

Fig. 8. S_XCS1 with known AGS on 3-MUX, 6-MUX, 135-MUX & 1034-MUX problem

Table 3. S_XCS1 with AGS on 3-MUX, 6-MUX, 135-MUX & 1034-MUX

MUX Condition Length
3 VALUEAT OR 2 2 4
3 VALUEAT AND 2 2 4
3 VALUEAT ADDROF 2 2 4
3 VALUEAT AND 2 POWEROF 1 5
3 VALUEAT OR POWEROF 2 2 5
3 VALUEAT OR POWEROF 1 2 5
6 VALUEAT ADDROF 4 5 4
6 VALUEAT ADDROF 5 4 4
6 VALUEAT ADDROF 4 POWEROF 5 5
6 VALUEAT ADDROF POWEROF 3 4 5
6 VALUEAT ADDROF POWEROF 5 4 5
135 VALUEAT ADDROF 128 134 4
135 VALUEAT ADDROF 134 128 4
135 VALUEAT ADDROF POWEROF 22 128 5
135 VALUEAT ADDROF 128 PLUS 133 134 6
1034 VALUEAT ADDROF 1033 1024 4
1034 VALUEAT ADDROF PLUS 1029 1029 1024 6
1034 VALUEAT ADDROF MULTIPLY 1025 324 1024 6
1034 VALUEAT ADDROF PLUS 1029 1024 1024 6
1034 VALUEAT ADDROF MULTIPLY 1029 324 1024 6
1034 VALUEAT ADDROF PLUS 1033 1033 1024 6

54 C. Ioannides and W. Browne

5 Discussion

The S_XCS system (without tailored functions) does exhibit potential in developing
solutions that resemble the Disjunctive or the Conjunctive Normal Form of the k-
MUX problem, but it did not scale well. The reason for this was that few partially
correct classifiers exist, hence no building blocks and thus the Genetic Algorithm was
redundant. Coverage only could create a correct classifier. The values of environ-
mental variables could effectively change at every epoch and the functions (AND,
OR, NOT) were too granular to cover the change.

The S_XCS1 without abstraction system overcame the S_XCS problems and dis-
covered optimal classifiers, including 135-MUX problem. Importantly, this system
selected the most appropriate tailored functions and terminals for the domain, ignor-
ing the majority of the 10 functions available. Including some poorly tailored func-
tions did not incur population bloating or larger search times. One of the justifications
for developing abstraction was to reduce the increased search space caused by more
flexible alphabets, but the ability of XCS to select appropriate building blocks appears
to negate this problem.

As one classifier represents the complete, accurate solution, instead of part solu-
tions, the generalisation pressure exists on a global scale. If a classifier’s condition is
not general and optimal it will be replaced by the Action-set based genetic algorithm.
Ultimately, there will be one macroclassifier for each reward returned by the envi-
ronment.

The classical XCS produces a complete mapping of conditions to actions, includ-
ing actions that are always incorrect (hence completely accurate in their prediction).
The S_XCS system, which uses a restricted S-Expression alphabet, also produces
incorrect, but accurate classifiers. However, S_XCS1, which has multiple functions
available, only produces correct, accurate classifiers. It is hypothesised that multiple
partially-incorrect classifiers and the complexity of the expression describing an in-
correct classifier prevent their survival in the population. It is more likely to find a
correct, accurate classifier quickly and thus these will dominate the population.

Redesigning subsumption deletion for S-Expressions is unnecessary for compact-
ing the rule base as the coverage of each classifier is much greater, i.e. only one clas-
sifier is needed for the correct, accurate mapping. However, subsumption deletion
may be needed for stabilising the performance close to optimum and potentially for
the control of bloat. With many different functions, it is difficult to determine the
coverage and hence overlap of each individual classifier. Thus the evolved population
consists of many similar classifiers with similar fitness, which would require a tuned
deletion operator to remove slightly suboptimal classifiers.

Utilising the same alphabet as Genetic Programming (GP) results in many similari-
ties between GP and the techniques developed here, e.g. a single classifier solution
instead of a cooperation of classifiers. However, a guided population based search is
employed instead of a beam search, where the current best classifiers are evolved
[10]. The online learning abilities together with the inherent generalisation pressure of
XCS are still preserved. In order to prevent bloat the maximum depth of a classifier's
condition required limiting (e.g., to 3 in 6-MUX problem), but was simple to imple-
ment. The need for a multistage approach to learning is demonstrated in the layered
learning genetic programming approach [11].

 Investigating Scaling of an Abstracted LCS Utilising Ternary 55

Comparing the use of abstraction on the MUX problem (figures 7 and 8) showed
that abstraction assists the S-Expression XCS to learn more compactly as unimportant
aspects of the search space had already been removed by generalisation. In the do-
main tested, abstraction did not improve efficiency as the accurate, maximally general
set had to be created initially. Similarly, abstraction did not improve effectiveness due
to XCS being able to discover appropriate building blocks. Abstraction reduced the
quantity of irrelevant functions in a classifier during the initial stages of training,
which may prevent the system becoming trapped in local optima in other problem
domains. Abstraction also scaled well on hypothesised AGSs, which were tested up to
1034MUX.

It is not surprising that the use of tailored operators improved the scalability of the
LCS technique. Nor would it be difficult to create the functions using domain knowl-
edge in this toy problem. However, in unknown problems, where scaling is feasible,
the ability to automatically determine the functions that are required as the problem
difficulty increases is considered valuable, which may be most easily achieved using
abstraction.

6 Conclusions

Positive results were achieved in that abstraction can compact a rule base using higher
order functions once generalisation has occurred using a simple alphabet. Abstraction
is also efficient and can scale well - once the initial rule base has been formed when
possible.

However, abstraction was not needed to identify the most appropriate tailored
functions as XCS has the ability to identify good building blocks from potentially
useful tailored functions. The next step in the development of an abstraction algorithm
for LCS is to generate the tailored functions autonomously from generalised rules
without using domain knowledge.

References

1. Wilson, S.W.: ZCS: A Zeroth-level Classifier System. Evolutionary Computation 2(1), 1–
18 (1994)

2. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2), 149–
176 (1995)

3. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press
(1975)

4. Wilson, S.W.: Generalization in the XCS Classifier System. In: Koza, J., et al. (eds.) Ge-
netic Programming: Proceedings of the Third Annual Conference, pp. 665–674. Morgan
Kaufmann, San Francisco (1998)

5. Kovacs, T.: Evolving Optimal Populations with XCS Classifier Systems. MSc Thesis, Uni-
versity of Birmingham. Also Technical Report CSR-96-17 and CSRP-96-17, School of
Computer Science, University of Birmingham, Birmingham, UK (1996)

6. Kovacs, T.: XCS Classifier System Reliably Evolves Accurate, Complete, and Minimal
Representations for Boolean Functions. In: Roy, Chawdhry, Pant. (eds.) Soft Computing in
Engineering Design and Manufacturing, pp. 59–68. Springer, Heidelberg (1997)

56 C. Ioannides and W. Browne

7. Koza, J.: Genetic Programming. MIT Press, Cambridge (1992)
8. Lanzi, P.-L., Perrucci, A.: Extending the Representation of Classifier Conditions Part II:

From Messy Coding to S-Expressions. In: Proceedings of the Genetic and Evolutionary
Computation Conference, Orlando, Florida, pp. 345–352. Morgan Kaufmann, San Fran-
cisco (1999)

9. Butz, M.V.: Rule-Based Evolutionary Online Learning Systems: A Principled Approach to
LCS Analysis and Design. Studies in Fuzziness and Soft Computing, vol. 191 (2006)

10. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming - An Introduc-
tion. Morgan Kaufmann Publishers, San Francisco and dpunkt.verlag, Heidelberg (1998)

11. Gustafson, S.M., Hsu, W.H.: Layered learning in genetic programming for a cooperative
robot soccer problem. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi,
A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 291–301. Springer,
Heidelberg (2001)

12. Browne, W., Scott, D.: An abstraction algorithm for genetics-based reinforcement learning.
In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1875–1882.
ACM Press, Washington (2005)

Evolving Fuzzy Rules with UCS:
Preliminary Results

Albert Orriols-Puig1, Jorge Casillas2, and Ester Bernadó-Mansilla1

1Grup de Recerca en Sistemes Intel·ligents
Enginyeria i Arquitectura La Salle

Universitat Ramon Llull
Quatre Camins 2, 08022 Barcelona, Spain

{aorriols,esterb}@salle.url.edu
2Dept. Computer Science and Artificial Intelligence

University of Granada
18071, Granada, Spain

casillas@ugr.es

Abstract. This paper presents Fuzzy-UCS, a Michigan-style Learning
Fuzzy-Classifier System designed for supervised learning tasks. Fuzzy-
UCS combines the generalization capabilities of UCS with the good
interpretability of fuzzy rules to evolve highly accurate and understand-
able rule sets. Fuzzy-UCS is tested on a large collection of real-world
problems, and compared to UCS and three highly-used machine learn-
ing techniques: the decision tree C4.5, the support vector machine SMO,
and the fuzzy boosting algorithm Fuzzy LogitBoost. The results show
that Fuzzy-UCS is highly competitive with respect to the four learners in
terms of performance, and that the fuzzy representation permits a much
better understandability of the evolved knowledge. These promising re-
sults of the online architecture of Fuzzy-UCS allow for further research
and application of the system to new challenging problems.

1 Introduction

Michigan-style Learning Classifier Systems (LCSs) [19] are online machine learn-
ing techniques that use Genetic Algorithms (GAs) [19,18] to evolve a rule-based
knowledge. Among the different uses, several LCSs have been designed for per-
forming supervised learning tasks [34,4,3]. Typically, LCSs deal with numerical
attributes by means of evolving a set of interval-based rules that cooperate to pre-
dict the output of new unlabeled examples. Although the competence of LCSs in
terms of accuracy has been widely shown, this excellence has been hindered by a
poor interpretability of the evolved rule sets, which typically consist of large sets
of overlapping interval-based rules that can hardly be read by human experts.

During the last decade, the interest in Fuzzy Rule-Based Systems (FRBSs)
[11] has increased since they provide a robust, flexible, and powerful methodology
to deal with noisy, imprecise, and incomplete data. Besides, the fuzzy representa-
tion allows for a better interpretability of the classification models. This has led

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 57–76, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

58 A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla

to the first analyses and designs of Learning Fuzzy-Classifier Systems (LFCSs).
Since the introduction of the first LFCS [30], several new architectures have
been proposed [23,17,32,6,7,9], which have been mostly applied to reinforcement
learning and control tasks. One of the first proposals of LFCS for pattern clas-
sification was presented in [20]. These first successful steps toward the design of
competent LFCS warrants for further investigation, especially in the supervised
learning paradigm.

In this paper, we address the problem of interpretability in LCSs, and propose
Fuzzy-UCS, an online accuracy-based LFCS architecture that works under a su-
pervised learning paradigm. We depart from the UCS classifier system, which
has been shown to be highly competitive with respect to some of the most used
machine learning techniques [3]. We introduce a linguistic fuzzy representation
to UCS, and redesign most of its components to permit the system to deal with
fuzzy rules. With the inclusion of fuzzy rules, we seek for a better interpretabil-
ity of the evolved knowledge, as well as a reduction in the search space, while
maintaining a performance similar to the one obtained with an interval-based
representation. Moreover, we also prepare the system to be able to deal with
vague and uncertain data.

The remaining of this paper is organized as follows. Section 2 deeply explains
the proposed Fuzzy-UCS architecture, especially focusing on the differences from
the original UCS. In Sect. 3, we analyze the behavior of Fuzzy-UCS on a large
collection of real-world problems, and compare the performance an interpretabil-
ity of the models evolved by Fuzzy-UCS to those created by UCS and three other
machine learning techniques: C4.5, SMO, and Fuzzy LogitBoost. Finally, Sect. 4
concludes, highlights the differential traits of Fuzzy-UCS, and enumerates new
opportunities that will be addressed as further work.

2 Description of Fuzzy-UCS

Figure 1 schematically shows the learning process of Fuzzy-UCS. The learner
works in two different modes: training or exploration mode and testing or ex-
ploitation mode. During explore, Fuzzy-UCS evaluates online the quality of the
rule-based knowledge, and evolves it by means of a GA. During test, Fuzzy-
UCS uses the rules to infer the output of a given input instance. The different
components of the system are detailed as follows.

2.1 Representation

Fuzzy-UCS evolves a population [P] of classifiers, where each classifier consists
of a linguistic fuzzy rule and a set of parameters. The fuzzy rule is represented
as follows:

IF x1 is Ãk
1 and · · · and xn is Ãk

n THEN ck WITH F k (1)

where each input variable xi is represented by a disjunction (T-conorm operator)
of linguistic terms Ãk

i = {Ai1 ∨ ... ∨ Aini}. In our experiments, all the input

Evolving Fuzzy Rules with UCS: Preliminary Results 59

23

15

11

10

15

12

exp

.9.95.05(*,M)

. . .

Fw1w0

1

.8

.1

.2

0

10(SM,S)

.6.2(L,L)

.8.9(S,L)

.6.8(L,M)

11(S,M)

23

15

11

10

15

12

exp

.9.95.05(*,M)

. . .

Fw1w0

1

.8

.1

.2

0

10(SM,S)

.6.2(L,L)

.8.9(S,L)

.6.8(L,M)

11(S,M)

10.8.1.9(S,L)

23

15

12

.95

1

0

.9.05(*,M)

10(SM,S)

11(S,M)

10.8.1.9(S,L)

23

15

12

.95

1

0

.9.05(*,M)

10(SM,S)

11(S,M)
Correct Set [C]

Population

Match Set [M]Match Set [M]

Instance: (3.15, 1.8) Class: 1

matching

exploration

23

15110(SM,S)

.95 .9.05(*,M) 23

15110(SM,S)

.95 .9.05(*,M)

S M
1

0 10

3.15

Parameter’s
Update

Apply
EA?

GA = selection +
crossover + mutation

explotation
Reasoning = Infer class

Stream of
instances

L

Fig. 1. Schematic illustration of Fuzzy-UCS

variables share the same semantics. The variables are defined by triangular-
shaped fuzzy membership functions (see examples of these semantics with three
and five linguistic terms per variable in Fig. 2).

The consequent of the rule internally maintains one weight for each of the m
classes {wk

1 , · · · , wk
m}. Each weight wk

j indicates the soundness with which the
rule k predicts class j for an example that fully matches this rule. These weights
are incrementally updated with the learning interaction (see Sect. 2.3), and serve
to calculate the class of the rule. That is, the class ck predicted by the rule is
the class that has associated the weight with maximum value.

Each classifier has four main parameters: a) the fitness F , which estimates
the accuracy of the rule, b) the correct set size cs, which averages the sizes
of the correct sets in which the classifier has participated, c) the experience
exp, which reckons the contributions of the rule to classify the input instances,
and d) the numerosity num, which counts the number of copies of the classi-
fier in the population. All these parameters are updated online as specified in
Sect. 2.3.

To implement this representation, we propose to use a binary coding for the
antecedent of the rule. That is, a one-valued allele indicates that the corre-
sponding linguistic term is used in this variable. The class predicted by the rule
is codified as an integer, and the fitness as a float number. For instance, if we
have three linguistic labels {S [small], M [medium], L [large]} for each input and
two possible classes {c1, c2}, the fuzzy rule

IF x1 is S and x2 is {S or L} THEN c1 WITH 0.8 (2)

is encoded as: [100|101||c1|0.8].

60 A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla

0 1
0

1

(a) 3 linguistic labels

0 1
0

1

(b) 5 linguistic labels

Fig. 2. Representation of a fuzzy partition for a variable with (a) three and (b) five
triangular-shaped membership functions

2.2 Performance Component

The performance component of Fuzzy-UCS is inherited from UCS and adapted to
deal with the new fuzzy representation. UCS learns under a supervised learning
scheme. Given an input example e with its associated class c, UCS creates the
match set [M] with all the classifiers in [P] that match the input instance. Then,
[M] is used differently depending on whether the system is running on explore or
on exploit mode. In explore mode, UCS forms the correct set [C], which consists
of all the classifiers in [M] that advocate the class of the input example. If [C]
is empty, covering is triggered. In exploit mode, the best action selected from
the vote (weighted by fitness) of all classifiers in [M] is returned as the predicted
output.

Fuzzy-UCS follows this process, but the role of the matching and the inference
processes changes as they are adapted to deal with linguistic terms. In the fol-
lowing, the matching degree calculation and the phases followed in explore mode
are detailed. The inference mechanism used during test is explained in Sect. 2.5.

Calculation of the matching degree. The matching degree µAk(e) of a rule
k with an example e is computed as follows. For each variable xi of the rule, we
compute the membership degree for each of its linguistic terms, and aggregate
them by means of a T-conorm (disjunction). Then, the matching degree of the
rule is determined by the T-norm (conjunction) of the matching degree of all the
input variables. In our implementation, we used a bounded sum (min{1, a + b})
as T-conorm and the product (a · b) as T-norm. Note that we used a bounded
sum instead of other typical operators for the T-conorm to emulate the don’t
care used in the crisp representation. That is, with the bounded sum, a variable
will have no influence if all its linguistic terms are set to ‘1’.

Creation of the match set. Given the input e, all the classifiers with a match-
ing degree greater than zero form the match set.

Creation of the correct set. Next, the correct set [C] is created with all
the classifiers in [M] that advocate the class c. If there is not any rule in [C]
that matches e with the maximum matching degree, the covering operator is

Evolving Fuzzy Rules with UCS: Preliminary Results 61

triggered. We create the rule that matches e with maximum degree as follows.
For each variable xi, the linguistic term with maximum matching with ei is
activated. Then, the rule is generalized by setting each linguistic term to ‘1’
with probability P#. The parameters of the classifier are initialized to: F=1,
exp=0, num=1, and cs is set to the size of [C]. Finally, this rule is introduced
in the population if there is not any rule in [C] with the same matching degree.

2.3 Parameters Update

At the end of each learning iteration, the parameters of all the classifiers that
belong to the match set are updated according to their matching degree with
the input example e of class c. First, the experience of each rule is incremented
according to the current matching degree:

expk
t+1 = expk

t + µAk(e) (3)

Then, for each class j, we compute the sum of correct matchings cmj of each
classifier k:

cmk
jt+1

= cmk
jt

+ m(k, j) (4)

where

m(k, j) =

{
µAk(e) if j=c
0 otherwise

(5)

That is, we compute separately the sum of matching degrees of every rule with
the examples of different classes. Next, the weight of each class is computed as:

wk
jt+1

=
cmk

jt+1

expk
t+1

(6)

For example, if a rule k only matches examples of class j, the weight wk
j will

be 1 and the remaining weights 0. Rules that match instances of more than one
classes will have the corresponding weights ranging from 0 to 1. In all cases, the
sum of all the weights is 1.

Then, the fitness is computed from the class weights with the aim of favoring
classifiers that match instances of only one class. For this purpose, we compute
the fitness as follows:

F k
t+1 = wk

maxt+1
−

∑
j|j �=max

wk
jt+1

(7)

The equation selects the weight wk
max with maximum value and substract the

values of the other weights. Note that this formula can result in classifiers with
zero or negative fitness (for example, if the class weights are equal). Finally, the
correct set size csk is calculated as the arithmetic average of the sizes of all the
correct sets to which the classifier has belonged.

62 A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla

2.4 Discovery Component

Similarly to UCS, Fuzzy-UCS uses a genetic algorithm for discovering new
promising rules. The GA is applied on a correct set if the average time since
its last application on the classifiers that form this correct set is greater than
θGA. In this case, two parents are selected from [C] with probability proportional
to their fitness and the matching degree of their fitness. That is,

pk
sel =

(F k)ν · µAk(e)∑
i∈[C]|F i≥0(F i)ν · µAk(e)

(8)

where ν > 0 is a constant that fixes the pressure toward maximally accurate
rules (in our experiments, we set ν=10). Rules with negative fitness are not
considered for selection. The fitness of young classifiers is decreased since they
receive a minimum number of updates. That is, if expk < θexp, the fitness of the
classifier k is multiplied by 1/θexp.

Next, the parents are crossed and mutated with probabilities Pχ and Pµ re-
spectively. The consequent of the rule and the parameters of the offspring are
initialized as in covering.

The crossover operator crosses the rule antecedent by two points selected
randomly. This could result in classifiers containing variables with no linguistic
terms, which would indicate that the rule is not applicable. If this is the case,
we copy a linguistic term from one of the parents. Crossover does not modify
the consequent of the rule.

The mutation operator randomly decides if a variable has to be mutated.
If a variable is selected, three types of mutation can be applied: expansion,
contraction, or shift. Expansion chooses a linguistic term not represented in the
corresponding variable and adds it to this variable; thus, it can only be applied
on variables that do not have all the linguistic terms. Contraction is the opposite
process: is removes a linguistic term from one variable; so, it can only be applied
if the variable has more than one linguistic term. Shift changes a linguistic term
for its immediately inferior or superior.

Finally, the new offspring are inserted into the population. First, each offspring
is checked for subsumption with its parents. If either of the parents is enough
experienced (exp > θsub), highly accurate (F > F0), and more general than the
offspring, its numerosity is incremented. If the offspring cannot be subsumed by
any of its parents, the same process is used to find a subsumer in [C]. If there is
no subsumer, the offspring is inserted in the population. A classifier is deleted if
the population is full; in this case, each classifier is given a deletion probability of

P k
del =

dk∑
∀j∈[P] dj

(9)

where

dk =
{

csk · numk · F
F k if expk > θdel and (F k)ν < δF

csk · numk otherwise
(10)

Evolving Fuzzy Rules with UCS: Preliminary Results 63

where F is the average fitness of classifiers in [P], and δ and θdel are two para-
meters set by the user (0 < δ < 1 and θdel >0). Thus, this method gives higher
deletion probabilities to numerous classifiers that belong to large correct sets;
moreover, it also penalizes experienced classifiers with low fitness.

2.5 Fuzzy-UCS in Test Mode

Fuzzy-UCS aims at obtaining a highly accurate rule set of minimum size. To
obtain high accuracy, we need to define an effective reasoning method that infers
the output class from the final population. To obtain a reduced rule set, some
reduction strategies may be applied to remove classifiers that are not important
for the reasoning. In the following, we discuss two reasoning approaches which
lead to two different rule set reduction mechanisms.

Class Inference. In test mode, given a new unlabeled instance e, several rules
can match (with different degrees) this instance, each having a certain fitness
F k. Thus, a reasoning process needs to be applied to decide the output. Here,
we propose two fuzzy-inference approaches:

1. Weighted average inference. In this approach, all rules vote to infer the
output. Each rule k emits a vote vk for class j it advocates, where

vk = F k · µAk(e) (11)

The votes for each class j are added:

∀j : votej =
N∑

k|ck=j

vk (12)

and the most-voted class is returned as the output. Note that this strategy
is analogous to the inference scheme of UCS.

2. Action winner inference. This approach proposes to select the rule k that
maximizes F k ·µAk(e), and choose the class of the rule as output [20]. Thus,
the knowledge of overlapping rules is not considered in this inference scheme.

Ruleset Reduction. At the end of the learning, the population is reduced to
obtain a minimum set of rules with the same training accuracy as the original
rule set. The reduction strategy depends on the type of inference used.

1. Reduction based on weighted average. Under the weighted average inference,
the final population is reduced by removing all the rules that a) are not
experienced enough (exp < θexploit) or b) have zero or negative fitness.

2. Reduction based on action winner. If action winner inference is used, it is
only necessary to maintain the rules that maximize the prediction vote for
each training example. Thus, after training, this reduction scheme infers the
output for each training example. The rule that maximizes the vote vj for
each example is copied to the final population.

64 A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla

Next section compares Fuzzy-UCS with the two inference and reduction mech-
anisms to UCS and other machine learning techniques. For notation, these
schemes will be addressed as: weighted average inference (wavg), and action
winner inference (awin).

3 Experimentation

In this section, we analyze the competence of Fuzzy-UCS in classification tasks.
The main goal of data classification is to obtain highly accurate models that
provide comprehensible explanations for human experts. For this purpose, we
compare the performance and rule set interpretability of Fuzzy-UCS with respect
to UCS and three other well-known machine learning techniques: the decision
tree C4.5 [25], the support vector machine SMO [24], and the boosting algorithm
based on a fuzzy representation Fuzzy LogitBoost [22]. In the following, we first
detail the methodology followed in the comparison and then present the results
obtained.

3.1 Methodology

Experimentation Problems. We selected a collection of twenty real-world
problems. This collection includes problems with different characteristics (see
Table 1) which may pose particular challenges to the different learning tech-
niques. All these problems were obtained from the UCI repository [5], except for
tao, which was chosen from a local repository [4].

Machine Learning Techniques Included in the Comparison. We com-
pared Fuzzy-UCS with the two inference mechanisms to four machine learning
techniques: UCS, C4.5, SMO, and Fuzzy LogitBoost. UCS [3] is the learning
classifier system from which Fuzzy-UCS was derived; so, we want to analyze
whether the fuzzy representation permits to achieve similar performance and
improves the interpretability of the rule sets evolved by UCS. C4.5 [25] is a de-
cision tree that enhances ID3 by introducing methods to deal with continuous
variables and missing values. C4.5 is one of the most used learners in the realm
of pattern classification, since it usually results in accurate tree-based models
which are quite interpretable by human experts. SMO [24] is a widely-used im-
plementation of support vector machines [31]; SMO implements the Sequential
Minimization Algorithm to solve the dual problem. We included both C4.5 and
SMO into the analysis to compare Fuzzy-UCS to two top-notch machine learn-
ing techniques. Fuzzy LogitBoost [22] is a boosting algorithm that iteratively
invokes a genetic algorithm to extract simple fuzzy rules that are combined to
decide the output of new examples. We selected Fuzzy LogitBoost to be in the
comparison since it is a modern method which relies on statistics theory, and
so, it is a good representative of fuzzy learners. Table 2 summarizes the main
characteristics of the learners.

C4.5 and SMO were run using WEKA [35]. For Fuzzy LogitBoost, we used
KEEL [2]. For UCS, we ran our own code. All the open source methods were

Evolving Fuzzy Rules with UCS: Preliminary Results 65

Table 1. Properties of the data sets. The columns describe: the identifier of the data
set (Id.), the name of the data set (dataset), the number of instances (#Inst), the total
number of features (#Fea), the number of real features (#Re), the number of integer
features (#In), the number of nominal features (#No), the number of classes (#Cl),
and the proportion of instances with missing values (%Miss)

Id. dataset #Inst #Fea #Re #In #No #Cl %Miss

ann Annealing 898 38 6 0 32 5 0
aut Automobile 205 25 15 0 10 6 22.4
bal Balance 625 4 4 0 0 3 0
bpa Bupa 345 6 6 0 0 2 0
cmc Contraceptive method choice 1473 9 2 0 7 3 0
col Horse colic 368 22 7 0 15 2 98.1
gls Glass 214 9 9 0 0 6 0
h-c Heart-c 303 13 6 0 7 2 2.3
h-s Heart-s 270 13 13 0 0 2 0
irs Iris 150 4 4 0 0 3 0
pim Pima 768 8 8 0 0 2 0
son Sonar 208 60 60 0 0 2 0
tao Tao 1888 2 2 0 0 2 0
thy Thyroid 215 5 5 0 0 3 0
veh Vehicle 846 18 18 0 0 4 0
wbcd Wisc. breast-cancer 699 9 0 9 0 2 2.3
wdbc Wisc. diagnose breast-cancer 569 30 30 0 0 2 0
wne Wine 178 13 13 0 0 3 0
wpbc Wisc. prognostic breast-cancer 198 33 33 0 0 2 2
zoo Zoo 101 17 0 1 16 7 0

Table 2. Summary of the main characteristics of the learners included in the compar-
ison: C4.5, SMO, UCS, and Fuzzy LogitBoost (Bst)

Paradigm Knowledge Rep. and Inference Method

C4.5
Decision-tree induction Decision-tree.

Inference: class given by the corresponding
leaf.

SMO
Neural networks (support vec-
tor machines)

Weights of the support vector machines.
Inference: The class is determined by the de-
cision function represented by the SVM.

UCS
Michigan-style GBML Population of intervalar rules with a fitness

value.
Inference: The output is the most voted class
among the matching classifiers.

Bst
Statistical Learning Theory
and GBML

Population of linguistic fuzzy rules with a
strength per class.
Inference: The output is the most voted class
among the matching classifiers.

66 A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla

configured with the parameters values recommended by default, with the fol-
lowing exceptions. The model for SMO was selected by choosing the kernel that
maximized the global accuracy with respect to the other learners. That is, we
ran SMO with polynomial kernels of order 1, 3, 5, and 10, and with a Gaussian
kernel. Then, we ranked the results obtained with the three polynomial kernels
and chose the model that maximized the average rank: SMO with polynomial
kernels of order 3. We followed a similar strategy to select the maximum popu-
lation size of Fuzzy LogitBoost, for which we did not find a set of recommended
values in the literature. We tried population sizes of N={8,25,50,100} for all the
data sets, and provide the results of N=50 since they permitted to achieve, in
general, higher performance ratios than N=8 and N=25, and did not significantly
differ from the results obtained with N=100.

UCS was configured with the following parameters (see [3,21] for notation
details): numIter=100,000, N=6400, acc0 = 0.99, ν=10, {θGA, θdel, θsub}=50,
Pχ=0.8, Pµ=0.04, δ=0.1, P#=0.6. These are typical configuration parameters
for UCS. No extra experimentation was made to improve the performance re-
sults, so that the reported results could be even improved with a further tun-
ing of configuration parameters. Similar configuration parameter values were
chosen for Fuzzy-UCS, that is: numIter=100,000, N=6400, F0 = 0.99, ν =
10, {θGA, θdel, θsub} = 50, θexploit = 10, Pχ = 0.8, Pµ = 0.04, δ=0.1, and
P# = 0.6. Both fuzzy based learners, i.e., Fuzzy-UCS and Fuzzy LogitBoost,
used five linguistic terms per variable defined by triangular-shaped membership
functions.

Comparison Metrics. The data models built by each learner were evaluated
in terms of performance and interpretability. We measured the performance of
the method with the test accuracy, i.e., the proportion of correct classification
on previously unseen examples. To obtain reliable estimates of test accuracies,
we ran the experiments on a ten-fold cross validation [29]. For the stochastic
methods, the results provided correspond to the average of ten runs with different
random seeds.

The comparison of the interpretability of the models is more complicated since
the methods included in the comparison use different knowledge representations.
Whilst UCS, Fuzzy-UCS, and Fuzzy LogitBoost use a rule-based representation,
C4.5 builds a decision tree, and SMO represents the data model with the weights
(ranging from 0 to 1) of a support vector machine. For this reason, we gathered
some indicators of the model sizes, i.e., number of rules for the rule-based sys-
tems, number of leaves for the trees, and number of weights for the support
vector machines. In the next section, we qualitatively discuss the advantages
and disadvantages of the different representations.

Statistical Analysis. We followed the methodology pointed in [12] to statisti-
cally analyze the differences in performance among learners. As suggested by the
author, we avoided to use any parametric statistical test since they require that
the data satisfy several strong conditions. Instead, all the statistical analysis is
based on non-parametric tests.

Evolving Fuzzy Rules with UCS: Preliminary Results 67

We first applied a multi-comparison statistical procedure to test whether all
the learning algorithms performed the same on average. Specifically, we used the
Friedman test [15,16], the non-parametric equivalent to the analysis of variance
test ANOVA [14]. As indicated in [12], if the Friedman test rejects the hypothesis
that all the learners perform the same on average, several post-hoc tests can be
used to detect significant differences between groups of learners. As our aim
was to compare Fuzzy-UCS to the other learners (that is, one control learner
against the others) we used the non-parametric Bonferroni-Dunn test [13]. The
Bonferroni-Dunn test defines that one learner performs significantly differently
than a control learner if the corresponding average rank differs by, at least, a
critical difference CD, which is computed as

CD = qα

√
n�(n� + 1)

6nds
(13)

where n� is the number of learners in the comparison, nds is the number of data
sets, and qα is the critical value based on the Studentized range statistic [28]. We
illustrate the results of this test by showing the group of learners that perform
equivalently to the control learner.

The Bonferroni-Dunn test is said to be conservative, especially as the number
of learners increases or the number of data sets decreases, so that it may not de-
tect significant differences although they actually exist. Nonetheless, we use this
test in the first stage of our analysis since it permits to detect groups of learn-
ers that truly perform differently from other learners. We latter apply pairwise
comparisons to detect further significant differences between learners that be-
long to the same group, assuming the risk of increasing the error of rejecting null
hypotheses when they are actually true. We used the non-parametric Wilcoxon
signed-ranks test [33] for pairwise comparisons, and provide the approximative
p-values computed as indicated in [28].

3.2 Results

Comparison of the Performance. Table 3 shows the average performance
obtained with the six learners on the twenty real-world problems. The last two
rows of the table supply the average rank and the position of each learner in the
ranking. The procedure to calculate the ranks is the following. For each data set,
we ranked the learning algorithms according to their performance; the method
with the highest accuracy was the first in the ranking, while the learner with the
poorest results holds the last position of the ranking. If a group of learners had
the same accuracy, we assigned the average rank of the group to each of those
learners.

The experimental results evidence the competitiveness of Fuzzy-UCS with re-
spect to the other machine learning techniques, especially when all the rules are
used in the inference process. That is, Fuzzy-UCS with weighted average infer-
ence is the third method of the ranking; it is only outperformed by SMO with
polynomial kernels and UCS, the method from whom Fuzzy-UCS was inspired.

68 A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla

Table 3. Comparison of the accuracy rate of Fuzzy-UCS with weighted average (wavg)
and action winner (awin) inference schemes to UCS, C4.5, SMO, and Fuzzy LogitBoost
(LBoost). The two last rows of the table report the average rank of each learning
algorithm (Rnk), and its position in the rank (Pos).

UCS C4.5 SMO LBoost
Fuzzy-UCS
wavg awin

ann 99.05 98.90 99.34 76.20 98.85 97.39
aut 77.41 80.94 78.09 32.63 74.42 67.42
bal 77.32 77.42 91.20 88.30 88.65 84.40
bpa 67.59 62.31 59.97 64.46 59.82 59.42
cmc 50.27 52.62 48.75 51.10 51.72 49.67
col 96.26 85.32 75.59 63.06 85.01 82.46
gls 70.04 66.15 66.15 68.18 60.65 57.21
h-c 79.72 78.45 78.59 62.09 84.39 82.62
h-s 74.63 79.26 78.89 59.33 81.33 80.78
irs 95.40 94.00 92.67 95.33 95.67 95.47
pim 74.61 74.23 76.70 71.84 74.88 74.11
son 76.49 71.07 85.52 53.38 80.78 73.71
tao 87.00 95.92 84.22 91.73 81.71 83.02
thy 95.13 94.91 88.91 97.08 88.18 89.49
veh 71.40 71.14 83.30 37.25 67.68 65.35
wbcd 96.28 94.99 96.42 94.12 96.01 95.73
wdbc 95.96 94.40 97.58 62.74 95.20 94.61
wne 96.13 93.89 97.75 85.02 94.12 94.86
wpbc 69.40 71.61 81.25 76.35 76.06 76.05
zoo 96.78 92.81 97.83 41.89 96.50 94.78
Rnk 2.80 3.63 2.68 4.55 3.20 4.15
Pos 2 4 1 6 3 5

These results indicate that, even though the granularity limitations that the
linguistic fuzzy representation may impose compared to an interval-based rep-
resentation, Fuzzy-UCS presents a similar performance than UCS. Besides, note
that Fuzzy-UCS with weighted average achieves a better average rank than C4.5,
one of the most used machine learning techniques. Similarly, Fuzzy-UCS with
weighted average also outperforms Fuzzy LogitBoost, indicating that Fuzzy-UCS
can evolve more accurate fuzzy rules than Fuzzy LogitBoost.

The average rank worsens when only the information of the best rules is used
for inferring the class of new input instances. That is, Fuzzy-UCS with action
winner inference holds the fifth position of the ranking. These results confirm the
advantages of combining the information of all the fuzzy rules in the inference
process [10]. However, the next section shows that Fuzzy-UCS with action winner
results in much more reduced rule sets than Fuzzy-UCS with weighted average,
which opens an accuracy-interpretability trade-off. Moreover, Fuzzy-UCS with
action winner also outperforms the other fuzzy learner, Fuzzy LogitBoost.

We analyzed statistically the results to identify significant differences among
learners. Friedman test for multiple comparisons rejected the null hypothesis

Evolving Fuzzy Rules with UCS: Preliminary Results 69

Table 4. Pairwise comparison of the performance of the six learners by means of a
Wilcoxon signed-ranks test. The above diagonal contains the approximate p-values.
The below diagonal shows a symbol ⊕ / 	 if the method in the row significantly
outperforms/degrades the method in the column at a significance level of .05 and
+/=/− if there is no significant difference and performs better/equal/worse.

UCS C4.5 SMO LogitBoost wavg awin

UCS .2043 .6542 .0072 .4330 .0674
C4.5 - .4209 .0111 .7938 .3905
SMO + + .0072 .1672 .0400
LogitBoost 	 	 	 .0100 .0276
wavg - + - ⊕ .0032
awin - = 	 ⊕ 	

that the six learners performed the same on average with p = 0.006. To evaluate
the differences between Fuzzy-UCS with the two inference schemes and the other
learners, we applied the Bonferroni-Dunn test at α = 0.10. Figure 3 places each
method according to its average rank. Furthermore, it connects with a line the
methods that perform equivalently to (1) Fuzzy-UCS with weighted average in-
ference, and (2) Fuzzy-UCS with action winner inference. The statistical analysis
indicates that Fuzzy-UCS with weighted average significantly outperforms Fuzzy
LogitBoost. Besides, Fuzzy-UCS with action winner performs equivalently to all
the methods except for SMO.

As the Bonferroni test is said to be conservative [28], so that it may not detect
all the significant differences, we complemented the statistical study by compar-

2 2.5 3 3.5 4 4.5 5

↓
UCS

2.8

↓
C4.5

3.63

↓
SMO

2.68

↓
LBoost

4.55

↓
wavg

3.2

↓
awin

4.15

Bonferroni−Dunn Test at α=0.10

(1)

(2)

CD = 1.376

Fig. 3. Comparisons of one leaner against the others according to a Bonferroni-Dunn
test at a significance level of 0.10. All the learners are compared to two different control
groups: (1) Fuzzy-UCS with weighted average and (2) Fuzzy-UCS with action winner.
The methods connected are those that perform equivalently to the control learner.

70 A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla

ing each pair of learners. Note that with this approach we are increasing the risk
of rejecting hypothesis that are actually true [12]; nonetheless, we do not base
the statistical analysis on pairwise comparisons, but use them to complement
the conclusions drawn above. The above diagonal of Table 4 shows the approxi-
mate p-values of the pairwise comparison according to a Wilcoxon signed-ranks
test. The below diagonal indicates with the symbols ⊕ and � that the method
in the row significantly outperforms/degrades the performance obtained with
the method in the column. Similarly, the symbols + and - are used to denote
a non-significant improvement/degradation. The symbol = indicates that each
method outperforms and degrades the other the same number of times.

The pairwise analysis confirms the conclusions pointed by the Bonferroni-
Dunn test, and it detects additional significant differences among learners. The
test supports that Fuzzy-UCS with weighted average inference does not degrade
the performance of any other learner and significantly improves Fuzzy Logit-
Boost and Fuzzy-UCS with action winner inference. On the other hand, it in-
dicates that Fuzzy-UCS with action winner inference outperforms Fuzzy Logit-
Boost; besides, it degrades the results obtained by SMO and Fuzzy-UCS with
weighted average. Finally, note that Fuzzy-UCS with action winner inference is
statistically equivalent to C4.5; that is, it outperforms and degrades the results
of C4.5 in the same number of the data sets.

Comparison of the Interpretability. The analysis made in the previous
section highlights that Fuzzy-UCS is able to evolve highly accurate models, es-
pecially when the weighted average inference is used. Herein, we analyze the
readability of the models evolved by Fuzzy-UCS, and qualitatively compare them
to the models built by the other learners. To evaluate the readability of the final
model, we consider two aspects: (i) the intrinsic interpretability of the model,
i.e., if the knowledge representation can be easily understood by human experts;
and (ii) the size of the model.

First, we compare the type of rules evolved by Fuzzy-UCS to the other knowl-
edge representations. Figure 4 depicts partial examples of the models created by
each learner for the two-dimensional problem tao. Fuzzy-UCS evolves a set of
linguistic fuzzy rules with a fitness value (see Fig. 4(a)). UCS creates a popu-
lation of interval-based rules; the lower and upper bounds of the intervals can
take any valid value for the attribute (see Fig. 4(b)). C4.5 builds a decision tree
where each node establishes a decision over one variable (see Fig. 4(c)). SMO
creates

(
n
2

)
support vector machines (where n is the number of classes of the

classification problem), each one consisting of a set of continuous weights rang-
ing from 0 to 1 (see Fig. 4(d)). Fuzzy LogitBoost evolves a set of linguistic fuzzy
rules (see Fig. 4(e)). These rules are similar to the ones of Fuzzy-UCS, with the
following two exceptions. In Fuzzy-UCS, rule’s variables can take a disjunction
of linguistic terms; differently, in Fuzzy LogitBoost the variables are represented
by a single linguistic term. Furthermore, the rules of Fuzzy-UCS predict a sin-
gle class with a certain fitness, whilst the rules of Fuzzy LogitBoost maintain a
weight for each class, and use these weights in the inference process.

Evolving Fuzzy Rules with UCS: Preliminary Results 71

if x is XL then blue with F=1.00
if x is XS then red with F=1.00
if x is {XS or S} and y is {XS or S} then red with F=0.87

...
(a) Fuzzy-UCS

if x is [-6.00, -0.81] and y is [-6.00, 0.40] then red with acc= 1.00
if x is [2.84, 6.00] and y is [-5.26, 4.91] then blue with acc =1.00
if x is [-6.00, -0.87] and y is [-6.00, 0.74] then red with acc =1.00

...
(b) UCS

x <= -2.75
| x <= -3.25: red (308.0)
| x > -3.25
| | y <= 1.75: red (55.0)
| | y > 1.75
| | | x <= -3: red (11.0/1.0)
| | | x > -3
| | | | y <= 4.25: blue (6.0)
| | | | y > 4.25: red (4.0)

...

(c) C4.5

 - 1.000 * <0.229 0.875 > * X]
 - 0.298 * <0.708 0.437 > * X]

...

(d) SMO

if x is L and y is L then blue with -5.42 and red with 0.0
if x is M and y is XS then blue with 2.21 and red with 0.0
if x is M and y is XL then blue with -2.25 and red with 0.0

...
(e) Fuzzy LogitBoost

Fig. 4. Examples of part of the models evolved by (a) Fuzzy-UCS, (b) UCS, (c) C4.5,
(d) SMO, and (e) Fuzzy LogitBoost for the two-dimensional tao problem

This first analysis permits us to draw several observations concerning the read-
ability of the representation itself. In the following, we distinguish between three
types of learners depending on the inherent interpretability of their knowledge
representation:

1. SMO presents the least readable knowledge representation, since the weights
of the support vector machines provide poor information for human experts.
Thus, SMO is not suitablewhen the interpretability of themodels is important.

2. The trees created by C4.5 and the rules evolved by UCS can be easily inter-
preted by human experts given models of moderate size. However, note that
both the decision nodes and the rules codify the decision over input vari-
ables with continuous numbers. This permits to precisely define the decision
boundaries, but may hinder the interpretability of the models, especially
when the number of nodes or rules increases.

3. Fuzzy-UCS and Fuzzy LogitBoost use a linguistic representation. As the
input variables are represented by linguistic terms, individual rules can be
read more easily than interval-based rules and decision trees. Nonetheless,
linguistic terms imply a discretization of the feature space, which may result
in a loss of precision to define the class boundaries.

72 A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla

Next, we analyze the sizes of the models evolved by the different learners. For
this purpose, we used the following metrics. For rule-based systems, i.e., Fuzzy-
UCS, UCS, and Fuzzy LogitBoost, we counted the number of rules evolved. For
the tree-based system, i.e., C4.5, we reckoned the number of leaves, since each
path from the root of the tree to one leaf can be regarded as a complex rule.
Note that these measures are not directly comparable due to the differences in
the knowledge representations. However, we use these metrics to qualitatively
analyze the differences among learners.

Table 5 depicts the model sizes of the rule-based and tree-based systems.
These results show that:

1. Fuzzy-UCS with weighted average inference evolves smaller rules sets than
UCS in most of the problems; besides, the fuzzy rule representation is more
readable. However, the still large amount of rules may hinder the inter-
pretability of the final rule set.

2. Fuzzy-UCS with action winner inference creates a much smaller rule sets
than UCS and Fuzzy-UCS with weighted average. These big differences per-
mit to significantly improve the readability of the final rule set, at a cost of
slightly decreasing the test performance as shown in the previous section.

3. Fuzzy LogitBoost creates rule sets of moderate size. Actually, the size of the
rule sets is determined by a configuration parameter. In our experiments,

Table 5. Average sizes of the models built by UCS, C4.5, Fuzzy LogitBoost (LBoost),
and Fuzzy-UCS with weighted average and action winner inference

UCS C4.5 LBoost
Fuzzy-UCS
wavg awin

ann 4410 38 50 2769 75
aut 4064 44 50 3872 114
bal 1712 45 50 1212 114
bpa 2603 25 50 1440 73
cmc 3175 162 50 1881 430
col 3446 5 50 4135 154
gls 3013 24 50 2799 62
h-c 2893 29 50 3574 113
h-s 3499 17 50 3415 117
irs 634 5 50 480 18
pim 3225 19 50 2841 192
son 5999 14 50 3042 178
tao 609 36 50 111 19
thy 1283 8 50 1283 37
veh 4601 69 50 3732 332
wbcd 1799 12 50 3130 138
wdbc 5079 11 50 5412 276
wne 3413 5 50 3686 95
wpbc 5078 12 50 3772 156
zoo 1244 11 50 773 16

Evolving Fuzzy Rules with UCS: Preliminary Results 73

we set the maximum population size to 50 since it maximized the average
performance rank of the algorithm. Smaller population sizes could be set for
particular problems without loss of performance. However, we are interested
in robust methods that do not present a high dependency on their configu-
ration parameters. For this reason, we used the same parameters in all the
runs, and did not search for the best configuration for each specific data set
(in fact, we did not follow this approach for any learner).

The rule sets evolved by Fuzzy LogitBoost are slightly smaller than those
evolved by Fuzzy UCS. However, note that the rules created by LogitBoost
maintain a weight per each class (see Fig. 4(e)), whilst Fuzzy-UCS’s rules
only maintain a single fitness value (see Fig. 4(a)). Furthermore, Fuzzy-UCS
evolves different number of rules depending on the intrinsic complexities of
the domain, while Fuzzy LogitBoost needs to know beforehand the number
of rules to be created.

4. C4.5 evolves trees of moderate size. The number of leaves is sligthly inferior
than the number of rules of Fuzzy-UCS with action winner.

The whole analysis provided in this section showed the competitivity of Fuzzy-
UCS with respect to the other machine learning techniques. In terms of perfor-
mance, Fuzzy-UCS with weighted average inference was one of the best methods
in the ranking. In terms of interpretability, we showed that Fuzzy-UCS with
action winner inference resulted in rule sets much more reduced than those
evolved by UCS—and Michigan-style Learning Classifier Systems in general—at
the cost of slightly decreasing the test performance. This evidenced an accuracy-
interpretability trade-off: the more information is used in the inference, the more
accurate the prediction of the class of test examples is. The next section empha-
sizes the advantages of the online learning architecture and the many opportu-
nities that Fuzzy-UCS offers, which are left for further work.

4 Conclusions and Further Work

In this paper, we proposed Fuzzy-UCS, a Michigan-style Learning Fuzzy-Classifier
System for supervised learning. Fuzzy-UCS was derived from UCS with the aim of
achieving more understandable models. For this reason, we replaced the interval-
based rule representation of UCS with a linguistic fuzzy representation, and de-
signed two inference mechanisms that offer different levels of rule set reduction.

We tested the system on a large collection of real-world problems, and com-
pared the performance and interpretability of the models evolved by Fuzzy-
UCS—with the two types of inference—to the models created by UCS, and three
other machine learning techniques: the decision tree C4.5, the support vector
machine SMO, and the statistic classifier based on a fuzzy representation Fuzzy
LogitBoost. The results highlighted the competence of Fuzzy-UCS, which was
able to evolve highly accurate and interpretable rule sets. Moreover, it showed
an accuracy-interpretability trade-off. As expected, the more information is used
for the inference process, the highest the accuracy of the models is; however, the

74 A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla

readability of these models also worsens, since there are more rules in the final
populations. In further work, deeper research will be conducted to understand
more carefully the actual limitations imposed by the linguistic representation
and the inference scheme used, and fuzzy approximative representations will be
studied.

Besides its good behavior, Fuzzy-UCS presents two differential traits with
respect to the other learners in the comparison, which lead to several opportu-
nities concerning different challenges of data mining. Fuzzy-UCS, and in general
Michigan-style LCSs, evolve the rule set incrementally. This differs from many
learners which go several times through all the data set to create the classifica-
tion model. Due to the online architecture, Fuzzy-UCS could be applied to two
topics of increasing interest: (i) learning from large data sets [8], and, (ii) learn-
ing from data streams [1]. Furthermore, the use of fuzzy logic allows Fuzzy-UCS
to be adapted for learning from vague and uncertain data, which is frequent in
real-world classification problems [26,27]. The research on these three topics is
left as further work.

Acknowledgements

The authors thank the support of Enginyeria i Arquitectura La Salle, Ramon
Llull University, as well as the support of Ministerio de Educación y Ciencia
under projects TIN2005-08386-C05-01 and TIN2005-08386-C05-04, and Gener-
alitat de Catalunya under grants 2005FI-00252 and 2005SGR-00302.

References

1. Aggarwal, C.: Data Streams: Models and Algorithms. Springer, Heidelberg (2007)
2. Alcalá-Fdez, J., del Jesus, M.J., Garrell, J.M., Herrera, F., Herbás, C., Sánchez, L.:

Proyecto KEEL: Desarrollo de una herramienta para el análisis e implementación
de algoritmos de extracción de conocimiento evolutivos. In: Aguilar, J.S., Giráldez,
R., Riquelme, J.C. (eds.) Tendencias de la Mineŕıa de Datos en España, Red
Española de Mineŕıa de Datos y Aprendizage, pp. 413–424 (2004)

3. Bernadó-Mansilla, E., Garrell, J.M.: Accuracy-Based Learning Classifier Systems:
Models, Analysis and Applications to Classification Tasks. Evolutionary Compu-
tation 11(3), 209–238 (2003)

4. Bernadó-Mansilla, E., Llorà, X., Garrell, J.M.: XCS and GALE: a comparative
study of two learning classifier systems on data mining. In: Lanzi, P.L., Stolzmann,
W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 115–132.
Springer, Heidelberg (2002)

5. Blake, C.L., Merz, C.J.: UCI Repository of ML Databases: University of California
(1998), http://www.ics.uc.edu/∼mlearn/MLRepository.html

6. Bonarini, A.: Evolutionary Learning of Fuzzy rules: competition and cooperation.
In: Pedrycz, W. (ed.) Fuzzy Modelling: Paradigms and Practice, pp. 265–284.
Kluwer Academic Press, Norwell (1996)

7. Bonarini, A., Trianni, V.: Learning fuzzy classifier systems for multi-agent coordi-
nation. Information Sciences: an International Journal 136(1-4), 215–239 (2001)

http://www.ics.uc.edu/~mlearn/MLRepository.html

Evolving Fuzzy Rules with UCS: Preliminary Results 75

8. Bottou, L., Le Cun, Y.: On-line learning for very large data sets: Research Articles.
Applied Stochastic Models in Business and Industry 21(2), 137–151 (2005)

9. Casillas, J., Carse, B., Bull, L.: Fuzzy-XCS: a michigan genetic fuzzy system. IEEE
Transactions on Fuzzy Systems 15(4), 536–550 (2007)

10. Cordón, O., del Jesús, M.J., Herrera, F.: Analyzing the Reasoning Mechanisms in
Fuzzy Rule Based Classification Systems. Mathware & Soft Computing 5, 321–332
(1998)

11. Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems:
Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. In: Advances in
Fuzzy Systems—Applications and Theory, vol. 19, World Scientific, Singapore
(2001)

12. Dems̃ar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal
of Machine Learning Research 7, 1–30 (2006)

13. Dunn, O.J.: Multiple Comparisons among Means. Journal of the American Statis-
tical Association 56, 52–64 (1961)

14. Fisher, R.A.: Statistical Methods and Scientific Inference, 2nd edn. Hafner Pub-
lishing Co, New York (1959)

15. Friedman, M.: The Use of Ranks to Avoid the Assumption of Normality Implicit
in the Analysis of Variance. Journal of the American Statistical Association 32,
675–701 (1937)

16. Friedman, M.: A Comparison of Alternative Tests of Significance for the Problem
of m Rankings. Annals of Mathematical Statistics 11, 86–92 (1940)

17. Furuhashi, T., Nakaoka, K., Uchikawa, Y.: Suppression of excess fuzziness using
multiple fuzzy classifier systems. In: Proceedings of the 3th IEEE International
Conference on Fuzzy Systems, pp. 411–414. Morgan Kaufmann, San Francisco
(1994)

18. Goldberg, D.E.: Genetic Algorithms in Search, Optimization & Machine Learning,
1st edn. Addison Wesley, Reading (1989)

19. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of
Michigan Press (1975)

20. Ishibuchi, H., Nakashima, T., Murata, T.: Performance evaluation of fuzzy classifier
systems for multidimensional pattern classification problems. IEEE Transactions
on Systems, Man, and Cybernetics - Part B: Cybernetics 29(5), 601–618 (1999)

21. Orriols-Puig, A., Bernadó-Mansilla, E.: A Further Look at UCS Classifier System.
In: GECCO 2006: Genetic and Evolutionary Computation Conference workshop
program, Seattle, W.A., USA, 08–12 July 2006. ACM Press, New York (2006)

22. Otero, J., Sánchez, L.: Induction of descriptive fuzzy classifiers with the logitboost
algorithm. Soft Computing 10(9), 825–835 (2006)

23. Parodi, A., Bonelli, P.: A new approach to fuzzy classifier systems. In: Proceedings
of the 5th International Conference on Genetic Algorithms, pp. 223–230. Morgan
Kaufmann, San Francisco (1993)

24. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Opt.
In: Advances in Kernel Methods - Support Vector Lear. MIT Press, Cambridge
(1998)

25. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers, San Francisco (1995)

26. Sánchez, L., Couso, I.: Advocating the use of Imprecisely Observed Data in Genetic
Fuzzy Systems. IEEE Transactions on Fuzzy Systems (2007)

76 A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla

27. Sánchez, L., Couso, I., Casillas, J.: Modeling vague data with genetic fuzzy systems
under a combination of crisp and imprecise criteria. In: Proceedings of the 2007
IEEE Symposium on Computational Intelligence in Multicriteria Decision Making,
pp. 346–353 (2007)

28. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures.
Chapman & Hall, Boca Raton (2000)

29. Dietterich, T.G.: Approximate Statistical Tests for Comparing Supervised Classi-
fication Learning Algorithms. Neural Comp. 10(7), 1895–1924 (1998)

30. Valenzuela-Radón, M.: The Fuzzy Classifier System: A Classifier System for Con-
tinuously Varying Variables. In: 4th ICGA, pp. 346–353. Morgan Kaufmann, San
Francisco (1991)

31. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)
32. Velasco, J.: Genetic-based on-line learning for fuzzy process control. International

Journal of Intelligent Systems 13, 891–903 (1998)
33. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83

(1945)
34. Wilson, S.W.: Get Real! XCS with Continuous-Valued Inputs. In: Lanzi, P.L.,

Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp.
209–219. Springer, Heidelberg (2000)

35. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

A Principled Foundation for LCS

Jan Drugowitsch and Alwyn M. Barry

Department of Computer Science
University of Bath

Bath, BA2 7AY, UK
J.Drugowitsch@bath.ac.uk, A.M.Barry@bath.ac.uk

Abstract. In this paper we promote a new methodology for design-
ing LCS that is based on first identifying their underlying model and
then using standard machine learning methods to train this model. This
leads to a clear identification of the LCS model and makes explicit the
assumptions made about the data, as well as promises advances in the
theoretical understanding of LCS through transferring the understanding
of the applied machine learning methods to LCS. Additionally, it allows
us, for the first time, to give a formal and general, that is, representation-
independent, definition of the optimal set of classifiers that LCS aim at
finding. To demonstrate the feasibility of the proposed methodology we
design a Bayesian LCS model by borrowing concepts from the related
Mixtures-of-Experts model. The quality of a set of classifiers and con-
sequently also the optimal set of classifiers is defined by the application
of Bayesian model selection, which turns finding this set into a princi-
pled optimisation task. Using a simple Pittsburgh-style LCS, a set of
preliminary experiments demonstrate the feasibility of this approach.

1 Introduction

In this work we promote a model-based design approach for LCS that allows us
to define formally and from first principles which set of classifiers LCS aim at
learning, thus tackling the core question of LCS. The motivation behind acquir-
ing the model-based approach is that, in essence, any machine learning method
is based on some form of (sometimes implicit) model that determines its training
and makes explicit the assumptions that are made about the data that it mod-
els. Thus, if the model underlying LCS is made explicit, we can use standard
machine learning methods for its training and analysis, in addition to making
explicit the assumptions about the data. The latter is important as it tells us
how LCS differ from other approaches in machine learning, and in particular for
which kind of data they might feature superior performance.

Up to now, the design of LCS is mostly handled in an ad-hoc way with an
intuitive understanding of how the optimal set of classifiers might look like.
This leads to algorithmic descriptions of their implementations and subsequent
attempts of analysing their performance and inner working, such as, for example,
the extensive analysis of XCS [1] by Butz et al. [2,3,4]. We propose a different
approach: firstly, one should seek to make explicit the underlying model that

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 77–95, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

78 J. Drugowitsch and A.M. Barry

LCS uses for a set of classifiers to represent the data. Having such a model,
the definition of the optimal set of classifiers, that is, the set that LCS training
should seek, becomes simple, yet powerful: the optimal set of classifiers is the
one that models the data best.

Such a definition of the optimal set of classifiers, and with it the whole method-
ology, seemingly only applies to regression and classification tasks, and only if all
data is known before the LCS is trained (that is, for batch training). However,
we claim that the approach can be used to derive both batch and incremental
training methods, based on interpreting incremental methods as approximations
to solutions that can equally be found by a batch learning approach1. Also, the
approach can be extended to sequential decision tasks by the application of re-
inforcement learning, and using LCS to approximate the value function, which
is an incremental non-stationary univariate regression task [5].

Naturally, there is no single model that describes all possible LCS variants.
Similarly, there is not only a single machine learning method that can be applied
to tell us which model represent the data best. Thus, we want to emphasise that
the regression model that forms the core of this paper — which is one that
closely resembles XCS(F) [1,6] — and the methods that we have applied to
define and find the best set of classifiers are only meant to illustrate that the
methodology we promote does indeed lead to feasible LCS implementations. The
presented model can be easily reformulated to a classification model that leads
to a different LCS specialised on classification tasks. Alternatively, it might be
reformulated to make different assumptions about the data, which leads to a
different LCS variants.

Due to space constraints we mainly focus on formulating the model, which we
derive from a generalisation of the well-known Mixtures-of-Experts model. As
most of the LCS research is focused on model training rather than the model
itself, we will also give an overview of how to train the presented model, and show
preliminary experimental results. While we understand that the brevity of the
presentation might make the details of the approach not immediately accessible,
we feel that it needs to be presented as a whole to at least initially underline
this holistic approach. Consequently, the experiments that we present cannot
be reproduced by the reader, but we will make all necessary details available in
forthcoming publications.

We start by giving a general description of LCS as a model that combines
localised models (that is, the classifiers) to a global model. We then link such
a structure to a generalised Mixture-of-Experts model, followed by discussing
how to keep its training computationally tractable. Furthermore, we exploit the
model by introducing a principled approach to the identification of the quality
of a set of classifiers given the data, leading to a formal and general definition
of the optimal set of classifiers. As this approach requires a Bayesian model, we
fit priors to the probabilistic LCS model that make explicit the usually implicit

1 A simple example is the application of Recursive Least Squares as an incremental
approach to finding a solution that can equally be found be any Least Squares batch
method.

A Principled Foundation for LCS 79

prior assumptions that each model makes about the data. The quality metric
on a set of classifiers turns the search for a good set of classifiers into an opti-
misation problem that can be handled by a genetic algorithm, which allows for
the creation of a simple Pittsburgh-style LCS. Using such an implementation,
we present some experimental results that show the applicability of the previ-
ously introduced concepts and conclude by pointing out the achievements and
implications of this work.

2 Assembling an LCS Model

To create an adequate model for LCS we will firstly discuss the general structure
of LCS models, based on characterising them as a member of the family of
parametric models. This reveals that we can facilitate their similarity to the
well-known Mixtures-of-Experts model to provide a probabilistic formulation
for their model structure, describing a fixed set of classifiers.

2.1 A Bird’s Eye View of the LCS Model

A parametric model family in ML can be characterised by the model structure
M and the model parameters2 θ. While the model structure is usually chosen
before the model is trained, the model is fitted to the data by adjusting its
parameters. For example, given the family of feed-forward neural networks, the
number of hidden layers and nodes in each of the layers determines the model
structure, and the model parameters are the weights of the connections between
these nodes. Accordingly, the model structure commonly determines the number
of model parameters that need adjustment.

While the same concepts apply to classification and reinforcement learning
tasks, let us for now consider only regression tasks where the observations are
assumed to be sampled from a target function f that maps the input space
X = RDX into the output space Y = R. In LCS, we have a set of K classifiers,
each of which matches a subset of the input space. Considering classifier k, this
classifier matches Xk ⊆ X and provides a localised regression model f̂ : Xk → Y,
where the localisation is determined by Xk and is traditionally represented by
the condition and action of a classifier. To provide a model of the full target
function, the local models are mixed (that is, combined) in some way to provide
the estimate f̂ : X → Y, assuming that each element of X is matched by at least
one classifier.

Leaving incremental training methods aside for now, this perspective reveals
that the model structure M in LCS is in fact the number of classifiers in the
population, and the parts of X that each of them matches. On the other hand,
the model parameters θ are the combined parameters of the regression model of
2 While a parameter in LCS often refers to a constant that is set before training LCS

and remains unchanged during training, we use it when referring to a variable of
the model that is modified during training, and call a parameter in the LCS sense a
system parameter.

80 J. Drugowitsch and A.M. Barry

each of the classifiers and the parameters of the model used to mix the classifier
predictions. It also shows that LCS do not only aim at training a model M
by adjusting the parameters of classifiers and mixing, but also tries to find an
adequate model structure that fits (but does not overfit) the target function.
While the second task is the more challenging one, let us for now concentrate
on the first one, that is, how to adjust the model parameters for a given model
structure, and come back to improving the model structure in Sect. 3. To do so,
we need to define exactly the regression models underlying the classifiers and
the model used for mixing their prediction.

Fortunately, Mixtures-of-Experts (MoE) [7,8] feature a similar model struc-
ture to LCS, and we can use this similarity to generalise MoE such that it corre-
sponds to the model that underlies LCS. While we introduce the standard MoE
model in the next section, we present the generalisations that make it similar to
LCS in the section thereafter.

2.2 Mixtures of Experts

Mixture of Experts are probably most intuitively explained from the generative
point-of-view: Let X = {xn ∈ X} be the set of N inputs, and Y = {yn ∈ Y}
the corresponding set of outputs, together giving the data D = {X, Y }. For a
set of K experts, each observation {x, y} is assumed to be generated by one and
only one expert. We can model this by introducing the latent random vector
z = (z1, . . . , zK)T of binary random variables, each of which corresponds to an
expert. Given that expert k̄ generated the observation, then zk̄ = 1 and zk = 0
for all k
= k̄. Hence, z has a 1-of-K structure, that is, it always contains one
and only one element that is 1, with all other elements being 0.

Concentrating again on regression tasks, let the model of expert k be given
by the conditional probability

p(y|x, wk, τk) = N (y|wT
k x, τ−1

k), (1)

that is, by a univariate Gaussian with mean wT
k x and precision (that is, inverse

variance) τk, where wk is the weight parameter and τk is the precision parame-
ter of expert k. This is a standard model for linear regression assuming constant
noise variance over all observations and can easily be fitted by maximum likeli-
hood, resulting in a linear least-squares problem.

As each observation is generated by one and only one expert, we can facilitate
the 1-of-K structure of z to get the probability of y given x and all experts by

p(y|x, W , τ , z) =
K∏

k=1

p(y|x, wk, τk)zk , (2)

where W = {wk}, τ = {τk}, and zk are the elements of the latent variable z
that corresponds to the observation {x, y}.

If we know the values of Z = {zn}, where zn stands for the latent variable cor-
responding to observation {xn, yn}, then we can train each expert independently

A Principled Foundation for LCS 81

to fit only the observations that it generated. This can be seen by expanding the
expression of the log-likelihood over the whole data

ln p(Y |X, W , τ , Z) = ln
N∏

n=1

p(yn|xn, W , τ , zn)

=
N∑

n=1

K∑
k=1

znk ln p(yn|xn, wk, τk),

where znk assigns the observations to the different experts. However, as Z is
usually not known beforehand, we need to learn a model for it at the same time
as training the experts. For that task MoE uses the multinomial logit model3; this
is a standard model for categorical data and in the MoE context is known as the
gating network, as it is responsible for associating observations and experts. It is
defined by introducing another parameter vector vk per expert that determines
the probability of expert k having generated observation {xn, yn} by

gk(xn) ≡ p(znk = 1|xn, vk) =
exp(vT

k xn)∑K
j=1 exp(vT

j xn)
. (3)

This function is also known as the softmax function, and defines a soft linear
partitioning over X . The model emerges from the assumption that the relation
between the probability of an expert k generating an observation {x, y} is log-
linear in x, that is p(zk = 1|x, vk) ∝ exp(vT

k x).
Given the model structure M of MoE by the number of experts K, and

having defined both the model for the experts and the gating network, the model
parameters θ = {W , τ , V } can be found by the EM-algorithm: in the E-step, the
posteriors p(znk = 1|xn, yn, vk) are computed based on the current goodness-
of-fit of the experts. The M-step uses these posteriors to adjust the expert and
gating network parameters in order to maximise the likelihood of the data D and
the latent variables Z [8]. This update has the effect that the gating network is
adjusted according to the goodness-of-fit of the different experts, and the experts
are trained according to how the gating network assigns the observations to the
experts. In combination, this causes the input space to be partitioned by a soft
linear partition, and each expert models the observations that fall in one of these
partitions. Hence, the experts form localised models, where the localisation is
determined by the gating network.

At this point the relation to LCS should be clear: The classifiers in LCS
correspond to the experts in MoE, and the gating network has the same task
as the mixing model in LCS. However, while the localisation of the classifiers
in LCS is part of the model structure, the experts in MoE are localised by the
interaction between the gating network and the experts. In the next section
we show how an additional localisation layer in the MoE model can act as a
generalisation to both the MoE model and the LCS model, and as such provides
a strong probabilistic foundation for the LCS model.
3 For details about the multinomial logit model and other generalised linear models

see [9].

82 J. Drugowitsch and A.M. Barry

2.3 LCS as Generalised Mixtures of Experts

As a generalisation to the standard MoE model, we want to restrict the possi-
bility of experts to generate observations to the inputs that the expert matches.
Such matching is easily introduced by an additional binary random variable mnk

that is 1 if expert k matches input xn, and 0 otherwise. In contrast to the latent
variables znk, mnk does not need to obey the 1-of-K as several experts can match
the same input. To enforce this matching, we define the probability of expert k
generating the observation {xn, yn} to be

p(znk = 1|mnk, xn, vk) ∝
{

exp(vT
k ϑ(xn)) if mnk = 1,

0 otherwise, (4)

where ϑ : X → RDV is a transfer function over the input vectors, resulting in an
additional generalisation over the MoE model, which uses ϑ(x) = x. Therefore,
if expert k matches input xn then the probability of it generating the observation
{xn, yn} is determined by a log-linear model as for the standard MoE model.
If it does not match, however, then it could not have produced the observation
either (that is, with probability 0). If we marginalise that probability over mnk,
we get

p(znk = 1|xn, vk) ∝ mk(xn) exp(vT
k ϑ(xn)), (5)

where we have defined the matching function mk(xn) ≡ p(mnk = 1|xn), giv-
ing the probability of expert k matching input xn. Adding the normalisation
constant, we get the redefined gating network

gk(xn) ≡ p(znk = 1|xn, vk) =
mk(xn) exp(vT

k ϑ(xn)∑K
j=1 mj(xn) exp(vT

j ϑ(xn))
. (6)

Comparing Eq. (6) to the gating network Eq. (3) of the standard MoE model,
we can see the additional mediation by the matching functions. As matching is
unchanged during the model fitting process, it is part of the model structure
which is hence given by M = {K, M}, where M = {mk} is the set of the
expert’s matching functions.

We do not need to modify the expert models, as by Eq. (4) an expert can
only generate observations for a particular input if it matches that input, that
is, p(znk = 1|xn, vk) > 0 only if mk(xn) > 0. Thus, Eq. (2) still remains valid in
the generalised MoE model.

To demonstrate that the model generalises over both MoE and LCS, we show
how each of them can be recovered by fixing parts of the model structure: To get
the standard MoE from our generalisation we simply need to assume a model
structure where each expert matches all inputs. This structure is for some K
given by the matching functions mk(xn) = 1 for all n and k. Additionally, we
have ϑ(x) = x as the gating network relies on the same inputs as the experts.
LCS are not (yet?) as well defined as MoE and thus we could already claim
that the generalised MoE by itself describes an LCS: A classifier corresponds
to an expert with its matching function being specified by its condition/action

A Principled Foundation for LCS 83

pair, that is, mk(x) = 1 if classifier k matches input x, and mk(x) = 0 other-
wise. Naturally, if the function ϑ is defined as something other than ϑ(x) = 1,
then training the generalised MoE would cause the classifiers to be localised in
regions of overlap beyond what is determined by their condition/action pair.
While we have experimented with such a setup in [10], current commonly used
LCS — such as XCS [1] and its derivates — perform mixing/gating based on
an input-independent scalar, which can be modelled by setting ϑ(x) = 1 for
all x. Additionally, mixing is usually performed by heuristics (such as the nor-
malised fitness in XCS), but having a better probabilistic justification like the
multinomial logit model is certainly an advantage.

2.4 Training the Classifiers Independently

While the generalised MoE can be trained just like the standard MoE by using
the EM-algorithm, its training comes with the same disadvantages: As the ob-
jective function for MoE is highly multi-modal, we will easily get stuck in local
optima [11]. This problem is usually addressed by random restarts when training
MoE, which still does not guarantee finding the optimal solution. In LCS, fitting
a model to the data (that is, tuning its model parameters) is necessary to eval-
uate a certain model structure, but that needs to be performed many-fold when
searching the space of possible model structures to find a good set of classifiers.
As this space is potentially huge and very complex, we need to quickly be able to
evaluate a single model structure, which is certainly not possible when utilising
a random restart strategy.

Fortunately we do not need to look very far to solve this problem: XCS ad-
dresses it implicitly by not considering the interaction between classifiers and
mixing. In fact, the multitude of local optima in the MoE model stem from
the interdependence of expert and gating network training. Note that this in-
terdependence is required to perform the necessary localisation of the experts.
However, in our generalisation of the MoE model there is a second layer of locali-
sation that is defined by the matching functions. Hence, for training the classifiers
we can assume that the localisation of the different classifiers is fully defined by
the matching function, which makes it independent of how their predictions are
mixed. This has the advantages that i) classifiers can be trained by a single
pass over the data; and ii) classifiers with the same associated condition/action
always have the same parameter values, independent of the other classifiers in
the population. The mixing parameters can now be either determined heuris-
tically or, alternatively, trained in a single pass based on the goodness-of-fit
of the different classifiers. On the downside, removing the link between classi-
fier training and how they are mixed reduces the goodness-of-fit of the whole
model, which needs to be counterbalanced by a more powerful model structure
search.

Note that the modified training schema moves the model away from MoE
towards ensemble learning where independently trained models are combined
to form a single model. While this link has also been established independently

84 J. Drugowitsch and A.M. Barry

in [12], it is clearly beyond the scope of this paper to elaborate on its implication.
Let us just point out that while interdependent classifier/mixing training as-
sumes that each observation is generated by one and only one classifier, training
the classifiers independently changes the assumptions about the data such that
each observation is assumed to be a mixture of different generative processes,
each of which is modelled by a different classifier.

3 Finding a Good Set of Classifiers

Probably the most important part of LCS is to find a good set of classifiers
that fit the data. But what is a good quality metric when we want to evalu-
ate the “goodness” of a set of classifiers? Its error when modelling the data is
certainly an important component. However, given a set of observations, the
model error is minimal if each observation is modelled by a single classifier —
a not very satisfactory solution, given that it does not provide any more in-
formation about the data than the data itself. An alternative is to seek for
the smallest set of classifiers that still results in an error-free fit of the data.
Although better than one classifier per observation, this method would not
fare well in the light of noisy data. XCS handles this problem by considering
classifiers as accurate up to a user-defined error threshold and thus provides
some form of accuracy/generalisation tradeoff. However, the solution does not
give guidelines on how to set the error threshold and thus can overfit the data
arbitrarily.

3.1 Applying Bayesian Model Selection

As already alluded to in the introduction, we approach the problem of defining
the quality of a set of classifiers by assessing how well the model structure it
represents explains the given data. Fortunately, this problem is well-known in
machine learning and is handled by the field of model selection. The essential
problem that model selection deals with is to find a model structure that does,
on one hand, correctly identify all pattern within the data (within the realm
of the model family) but avoids modelling randomness, essentially identifying
a good tradeoff between generalisation and goodness-of-fit of a model. This is
a difficult problem and different philosophical assumptions about the nature of
randomness leads to different results, such as the Minimal Description Length
[13] method or Statistical Learning Theory [14].

Bayesian model selection is a model selection method founded in Bayesian
statistics which has fortunately already been applied to the standard MoE model
[11,15]. It is based on the idea that the probability of a model structure given
the data can be evaluated by

p(M|D) ∝ p(D|M)p(M), (7)

A Principled Foundation for LCS 85

where p(D|M) is the goodness-of-fit of the data given a certain model struc-
ture, and p(M) is the prior probability for that model structure4. Hence, given
that we have a fully Bayesian model, the problem of finding a good model struc-
ture becomes as simple as finding one that maximises the model structure pos-
terior p(M|D).

3.2 A Bayesian LCS Model

To apply Bayesian model selection we require a Bayesian LCS model, which we
introduce by extending the probabilistic LCS model by adequate priors on its
model parameters. The priors that we introduce are similar to the ones used
by Waterhouse et al. for the Bayesian MoE model [17,18]. They are conjugate
priors5 where possible, except for the gating network parameters, where Laplace
approximation (for example, [19]) is required to keep the evaluation of the pa-
rameter posteriors analytically tractable.

We also give recommendations on the prior parameters that cause them to
be very uninformative; that is, in the light of some evidence the influence of the
prior on the posterior is negligible. This makes the model selection criterion and
subsequently also our definition of the optimal set of classifiers almost completely
independent of the choice of priors.

Classifier Model Priors. For the univariate linear classifier model Eq. (1) we
acquire the conjugate normal inverse-gamma prior

p(wk, τk|αk) = N (wk|0, (αkτk)−1I)Gam(τk|aτ , bτ)

=
(αkτk

2π

)DX /2 baτ
τ τ

(aτ−1)
k

Γ (aτ)
exp

(
−αkτk

2
wT

k wk − aττk

)
, (8)

where Gam(·|aτ , bτ) denotes the gamma distribution with scale aτ and shape
bτ , and Γ (·) is the gamma function. This prior expresses that we expect the
elements of the weight vector wk to be independently distributed by a zero-
mean Gaussian with precision (that is, inverse variance) αkτk. In other words,
we expect the weight elements to be small, which is a realistic assumption, given
that the target function that a classifier aims at modelling is expected to be
smooth. The noise precision τk is distributed according to a gamma distribution
which we will parameterise as in [11] by aτ = 10−2 and bτ = 10−4 to keep the
prior sufficiently broad an uninformative.

4 Bayesian model selection differs from the approach of maximum likelihood in that,
assuming a uniform model structure prior p(M), Bayesian model selection aims at
finding the M that maximises p(D|M), whereas maximum likelihood aims at finding
the parameters θ that maximise p(D|θ, M). The p(D|M) is found by marginalis-
ing over p(D|θ, M) (see Eq. (14)) which implicitly penalises the complexity of the
parameter space {θ} and hence protects from overfitting [16].

5 Conjugate priors are priors that, when conditioned on the data likelihood, result in
a posterior of the same distribution family as the prior.

86 J. Drugowitsch and A.M. Barry

Even though we could specify αk directly as an additional prior parameter,
we rather assign it a hyperprior as in [11] to allow it to automatically adjust to
the data. We specify this hyperprior by the gamma distribution

p(αk|aα, bα) = Gam(αk|aα, bα) =
baα
α α

(aα−1)
k

Γ (aα)
exp(−aααk), (9)

with parameters aα = 10−2 and bα = 10−4 to keep it uninformative.

Gating Network Priors. In the prospect of applying Laplace approximation
to the gating network model Eq. (6), resulting in a Gaussian, we apply conjugate
Gaussian priors to the gating weights, given by

p(vk|βk) = N (vk|0, β−1
k I)

=
(

βk

2π

)DV /2

exp
(

−βk

2
vT

k vk

)
. (10)

This again corresponds to the assumption of having gating weight vectors with
small and independent elements. βk is again modelled by a hyperprior, given by
the gamma distribution

p(βk|aβ , bβ) = Gam(βk|aβ , bβ) =
b
aβ

β β
(aβ−1)
k

Γ (aβ)
exp(−aββk), (11)

which parameter values aβ = 10−2 and bβ = 10−4 to keep the hyperprior unin-
formative.

Model Structure Prior. Recalling that M = {K, M} is the number of clas-
sifiers K and their matching functions M , the model structure prior p(M) in
Eq. (7) lets us specify any prior belief we have about the number of classifiers
and their matching functions, such as that the number of classifiers is certainly
not infinite. At first thought it might seem reasonable to specify it to express
that every possible unique model structure is equally likely to represent the data.
One should note, however, that the number of possible unique model structures
for a fixed number of classifiers K grows exponentially with K. Thus, putting a
uniform prior on the model structure space will put an implicit bias on model
structures with a large number of classifiers.

The contrary, which is to put a uniform prior on the number of classifiers
rather than the unique model structures, leads to a bias against particular model
structures with higher numbers of classifiers, as for those there exist more pos-
sible model structures. Thus, how to appropriately define p(M) is a topic of
further investigation, but for now we have chosen to specify it by

p(M) ∝ 1
K!

, (12)

to capture that in most LCS implementations the same model structure with
K classifiers can be specified in K! different ways by simply reordering the
classifiers.

A Principled Foundation for LCS 87

A summary of the full Bayesian model including its priors and hyperpriors
is given in App. A. The variable dependency structure that shows the different
random variables depend on each other is shown in Fig. 1.

yn

xn

znk

mnk

vk

wk

τk

βk

αk

aβ

bβ

aα

bα

aτ

bτ

K

M

classifiers

N

data

Fig. 1. Directed graphical model of the Bayesian LCS model. The circular nodes are
random variables, which are observed when shaded. Labels without nodes are either
constants or adjustable parameters. The boxes are “plates”, comprising replicas of the
entities inside them. Note that to train the model we assume the data D and the model
structure M to be given. Hence, the yn’s and M are observed random variables, and
the xn’s are constants.

3.3 Evaluating Posterior and Model Evidence

In order to evaluate the model structure posterior p(M|D) by Eq. (7), one needs
to know p(M) and p(D|M). In fact, as the posterior density is only used to
compare different model structures, we can equally use the unnormalised log-
density, that, by using Eq. (12), is given by

ln p(M|D) = ln p(D|M) − ln K! + const., (13)

where the constant term represents the logarithm of the normalisation constant.
To get the model evidence p(D|M) we need to evaluate

p(D|M) =
∫

θ

p(D|θ, M)p(θ|M)dθ, (14)

88 J. Drugowitsch and A.M. Barry

where θ = {W , τ , V , α, β} denotes the parameters of a model with structure M,
and p(θ|M) represents their priors, as we have specified above. Unfortunately,
there is no closed-form solution to Eq. (14) and so we have to either apply
sampling techniques to sample from the posterior or resort to approximating it.
We have decided for the latter, as sampling techniques are slower and would
prohibit the quick evaluation of a large number of model structure, which is
essential for LCS.

Variation Bayesian Inference with Factorial Distributions. Our goal is,
on one hand, to find a variational distribution p(U) that approximates the true
parameter posterior p(U |D, M) and, on the other hand, to get the model evi-
dence p(D|M) ≡ p(Y |X, M), where U = θ ∪ {Z} denotes all hidden variables.
Variational Bayesian inference is based on the decomposition [20,19]

ln p(Y |X, M) = L(q) + KL(q||p), (15)

L(q) =
∫

q(U) ln
p(U , Y |X, M)

q(U)
dU , (16)

KL(q||p) = −
∫

q(U) ln
p(U |X, Y , M)

q(U)
dU , (17)

which holds for any choice of the variational distribution q. As the Kullback-
Leibler divergence KL(q‖p) is always non-negative, and zero if and only if q(U) =
p(U |X, Y , M), the variational bound L(q) is a lower bound on ln p(Y |X, M)
and only equivalent to the latter if q(U) is the true posterior p(U |X, Y , M).
Hence, we can approximate the posterior by maximising the lower bound L(q),
which brings the variational distribution closer to the true posterior and at
the same time gives us an approximation of the model evidence by L(q) ≤
ln p(Y |X, M).

To make this approach tractable, we need to choose a family of distributions
q(U) that gives an analytical solution. A frequently used approach (for example,
[17,11]) that is sufficiently flexible to give a good approximation to the true
posterior is to use the set of distributions that factorises with respect to disjoint
groups Ui of variables q(U) =

∏
i qi(Ui), which allows us to maximise L(q) with

respect to each group of hidden variables while keeping the other ones fixed.
This results in

ln q∗i (Ui) = Ei�=j(ln p(U , Y |X, M)) + const.., (18)

when maximising with respect to Ui, where the expectation is taken with respect
to all hidden variables except for Ui, and the constant term is the logarithm of
the normalisation constant of q∗i [19].

Applying variational Bayesian inference to the Bayesian LCS model is a long-
winded and complex process that we will not illustrate here, but is described in
more detail in [21]. An analytical solution is only acquired if the model has a
conjugate-exponential structure, which is violated by the gating network. Thus,
we have applied Laplace approximation to its distribution, of which the details

A Principled Foundation for LCS 89

can also be found in [21]. Overall, the procedure results in a closed-form ex-
pression for the variational bound L(q) that can be improved incrementally and
can replace the model evidence p(D|M) in Eq. (7) to approximate the model
structure posterior.

3.4 Summarising the Approach

Our starting point was to apply model selection to find the set of classifiers that
model the data best, that is, without overfitting and underfitting. Approaching
the problem by Bayesian model selection, the problem becomes the one of finding
a set of classifiers M that maximises p(M|D). Given an efficient method to
evaluate p(M|D) for any M, any global optimisation method can be applied to
search the space of possible sets of classifiers to maximise p(M|D).

To get an expression for p(M|D), or more specifically for the unnormalised
ln p(M|D) that can equally be used to compare different M, we have applied
variational Bayesian inference. This results in an approximation L(q) to ln p(D|M)
which can be used in Eq. (13) to approximate ln p(M|D). Overall, this is suffi-
cient to implement simple algorithms that search for the optimal set of classifiers
for some data, with respect to the previously defined LCS model.

4 But..., Does it Work?

To illustrate that the introduced LCS design methodology leads to useful LCS
implementations, we demonstrate the performance of the introduced LCS model
and its training on two simple one-dimensional regression tasks. We understand
that the brevity of the presentation does not allow the results to be replicated,
but a forthcoming publication will, on one hand, give all the details that are
required for replication and, on the other hand, present further results.

In all experiments we have used linear classifiers with input vectors x = (1, x)T

for input x, causing the model to by represented by a straight line.

4.1 Model Structure Search

To search the space of possible sets of classifiers we have applied a genetic algo-
rithm (GA) to create a Pittsburgh-style LCS. The individuals represent model
structures, and their fitness is the approximated model structure posterior, eval-
uated by Eq. (13). Thus, by searching for the fittest individual, the GA aims at
finding the set of classifiers that maximises p(M|D).

We have used a rather small population of 20 individuals, and tournament
selection with a tournament size of 5 individuals. The individuals are of variable
length, and uniform crossover is performed by random sampling without replace-
ment from the combined set of matching functions of two selected individuals.
The mutation operator is dependent on the representation of the matching func-
tion and will not be detailed. In both experiments, the best individual of any of
the 500 training epochs is reported.

90 J. Drugowitsch and A.M. Barry

To demonstrate that any global optimisation method can be used to find ad-
equate model structures we have performed similar experiments using Monte
Carlo Markov Chain (MCMC) methods, analogous to how it was applied by
Chipman et al. in [22]. The found model structures were about the same as
when applying the GA for model structure search, but we expect MCMC to
perform worse in more complex problems where the GA can be expected to ex-
ploit building blocks in the solution structure. More details on applying MCMC
to model structure search are given in [21].

4.2 Approximating a Generated Function

To test if the method correctly identifies the model structure when the data
was generated in conformation to the LCS model assumptions, we have gener-
ated such data by combining the models of three localised classifiers with added
Gaussian noise. To demonstrate the LCS model’s ability to perform matching
by degree, we use radial basis matching function, given by

mk(x) = exp
(
−(2σ2

k)−1(x − µk)2
)
, (19)

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

gen. fn.
cl. 1
cl. 2
cl. 3

Fig. 2. The plot shows the mean of the data-generating function and the training
data itself. Additionally, it shows the linear models of the 3 identified classifiers and
the prediction of the full model with confidence intervals that represent one standard
deviation to either side of the prediction. As can be seen, the method identified a
model structure that fits the data well and is close in its parameter to the model that
generated the data.

A Principled Foundation for LCS 91

which is an unnormalised Gaussian that is centred on µk and has variance σ2
k.

Thus the classifier matches input x = µk with probability 1, and all other inputs
with a probability that decreases in proportion to the distance from µk.

The best model structure found in a single run of the GA is shown in Fig. 2,
illustrating the data, the classifiers in the model structure, and the mean predic-
tion with confidence intervals. The latter is an additional feature of the model-
based approach: due to the probabilistic model, we can make clear statements
about the confidence of the prediction. As can be seen, the found model structure
represents the data well. Additionally, the model structure parameters are fairly
close to the ones that were used to generate the data, and we do not expect the
search to find a perfect match as the model structure space is infinite.

4.3 Variable Measurement Noise

XCS seeks for classifiers that feature a mean absolute error close to a preset min-
imum error ε0, leading to classifier models with approximately equal variances.
The introduced LCS model is more flexible by allowing the classifier models
to have different variances, depending on the given data. To test if this fea-
ture can be exploited we generate data where the level of noise varies over the
input range. More specifically, the target function is for −1 ≤ x ≤ 1 given by
f(x) = −1−2x+N (0, 0.6) if x < 0, and is f(x) = −1+2x+N (0, 0.1) otherwise,
resulting in a V-shaped function with two different noise levels.

To let the classifiers match distinct areas of the input space we use interval
matching with soft boundaries to indicate that in the light of finite data we can
never be certain about where the interval boundaries lie. Given that classifier k
matches the interval [lk, uk], its matching function is given by

mk(x) =

⎧⎪⎪⎨⎪⎪⎩
exp

(
− 1

2σ2
k
(x − l′k)2

)
if x < l′k,

exp
(
− 1

2σ2
k
(x − u′

k)2
)

if x > u′
k,

1 otherwise,

(20)

where l′k ≈ lk+0.0566bk, u′
k ≈ uk+0.0566bk, σk ≈ 0.0662bk, and bk is the interval

width bk = uk − lk. This causes the classifier to match the interval [l′k, u′
k] with

probability 1, with unnormalised Gaussian boundaries that are with one stan-
dard deviation inside [lk, uk] and otherwise outside of the interval. Additionally,
95% of the area underneath mk(x) is inside [lk, uk].

The training data and best model structure found in a single training run with
500 epochs is shown in Fig. 3 and clearly shows by the width of its confidence
intervals that the identified model features different noise levels in different areas
of the input space. This illustrates that the method does not only protect from
overfitting at the model structure level, but also at the classifier level by correctly
separating the underlying pattern from the data.

The results of both experiments suggest that the method we have derived
works as expected. Still, we want to emphasise that the developed method is
only an example that show that the proposed model-based design methodology

92 J. Drugowitsch and A.M. Barry

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

f(x)
cl. 1
cl. 2

Fig. 3. The plot shows the mean of the data-generating function and the training
data itself. In addition, it shows the linear models of the 2 identified classifiers and
the prediction of the full model with confidence intervals that represent one standard
deviation to either side of the prediction. These confidence intervals clearly show that
the model is able to handle and model data whose noise level varies over the input
space.

not only provides us with a good understanding of the model underlying different
LCS variants, but also leads to useful and well-understood implementations.

5 Summary and Conclusions

We have proposed a new methodology for the design of LCS that is based on first
specifying the model underlying a set of classifiers and then applying standard
machine learning methods to train this model and identify a good set of classi-
fiers. The advantages of this approach are manifold, such as i) having a formal
definition of what it means for a set of classifiers to be the optimal set with re-
spect to some data; ii) conceptually separating the LCS model from its training;
iii) making explicit the assumptions the LCS model makes about the data; iv)
establishing strong links to other machine learning methods through the appli-
cation of standard machine learning methods for LCS training; and v) advancing
the theoretical understanding of LCS by transferring the understanding of the ap-
plied machine learning methods to LCS. Furthermore, the methodology promises
a high degree of flexibility in designing new LCS through changing the structure of
the LCS model, or applying different machine learning methods for their training.

To demonstrate that the methodology is feasible, we have introduced a model
for LCS and have described how it can be trained. In this workwe have particularly

A Principled Foundation for LCS 93

focused on the design of the model that is — closely related to XCS — specified
as combining a set of independently trained localised models to form a global pre-
diction over the whole input space. This characterisation allows it to be linked to
a generalisation of the well-known Mixtures-of-Experts model, which puts it on a
strong probabilistic foundation. For the identification of good model structures,
that is, good sets of classifiers, we have used Bayesian model selection that results
in the aim of maximising the probability of the model structure given the data. For
training we have use the variational Bayesian method to find the model structure
posterior, and have used a GA to search the space of possible model structures, re-
sulting in a Pittsburgh-style LCS. To illustrate that the sets of classifiers identified
that way indeed represent the data well, we have shown the methods performance
on two simple regression tasks.

The work has wide implications and it is opening up significant future research
directions, amongst which are i) to create a suitable LCS model specialised on
classification by changing the classifier models from regression to classification
models; ii) to compare and contrast LCS that train their classifiers independently
to those that do not; iii) to design suitable methods, eventually using the addi-
tional probabilistic information that is available through the model, to apply the
same methodology to design Michigan-style LCS; iv) analysing the suitability
of the regression model for approximating the value function of reinforcement
learning tasks.

Acknowledgements

We would like to thank Christopher M. Bishop, Markus Svensén and Matthew
Beal for useful comments to our questions regarding the variational Bayesian
approach.

References

1. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computa-
tion 3(2), 149–175 (1995)

2. Butz, M.V., Pelikan, M.: Analyzing the Evolutionary Pressures in XCS. In: [23],
pp. 935–942.

3. Butz, M.V., Goldberg, D.E., Tharakunnel, K.: Analysis and Improvement of Fit-
ness Exploitation in XCS: Bounding Models, Tournament Selection and Bilateral
Accuracy. Evolutionary Computation 11, 239–277 (2003)

4. Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.: Toward a Theory of Generalization
and Learning in XCS. IEEE Transaction on Evolutionary Computation 8, 28–46
(2004)

5. Drugowitsch, J., Barry, A.M.: A Formal Framework for Reinforcement Learning
with Function Approximation in Learning Classifier Systems. Technical Report
2006–02, University of Bath, U.K (January 2006)

6. Wilson, S.W.: Function Approximation with a Classifier System. In: [23], pp. 974–
981.

94 J. Drugowitsch and A.M. Barry

7. Jacobs, R.A., Jordan, M.I., Nowlan, S., Hinton, G.E.: Adaptive mixtures of local
experts. Neural Computation 3, 1–12 (1991)

8. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm.
Neural Computation 6, 181–214 (1994)

9. McCullach, P., Nelder, J.A.: Generalized Linear Models. Monographs on Statistics
and Applied Probability. Chapman and Hall, Boca Raton (1983)

10. Drugowitsch, J., Barry, A.M.: Mixing Independent Classifiers. In: [24]
11. Bishop, C.M., Svensén, M.: Bayesian Hierarchical Mixtures of Experts. In: Pro-

ceedings of the 19th Annual Conference on Uncertainty in Artificial Intelligence
(UAI 2003), pp. 57–64. Morgan Kaufmann, San Francisco (2003)

12. Brown, G., Kovacs, T., Marshall, J.: UCSPv: Principled Voting in UCS Rule Pop-
ulations. In: [24], pp. 1774–1782.

13. Grünwald, P.D.: A tutorial introduction to the minimum description length. In:
Grünwald, P., Myung, J., Pitt, M.A. (eds.) Advances in Minimum Description
Length Theory and Applications. Information Processing Series, pp. 3–79. MIT
Press, Cambridge (2005)

14. Vapnik, V.N.: An Overview of Statistical Learning Theory. IEEE Transactions on
Neural Networks 10(5), 988–999 (1999)

15. Ueda, N., Ghahramani, Z.: Bayesian model search for mixture models based on
optimizing variational bounds. Neural Networks 15, 1223–1241 (2002)

16. MacKay, D.J.C.: Bayesian interpolation. Neural Computation 4(3), 415–447 (1992)
17. Waterhouse, S., MacKay, D., Robinson, T.: Bayesian Methods for Mixtures of

Experts. In: Touretzky, D.S.T., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in
Neural Information Processing Systems 8, pp. 351–357. MIT Press, Cambridge
(1996)

18. Waterhouse, S.: Classification and Regression using Mixtures of Experts. PhD the-
sis, Department of Engineering, University of Cambridge (1997)

19. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, Heidelberg (2006)

20. Jaakkola, T.S.: Tutorial on variational approximation methods. In: Opper, M.,
Saad, D. (eds.) Advanced Mean Field Methods, pp. 129–160. MIT Press, Cam-
bridge (2001)

21. Drugowitsch, J., Barry, A.M.: Generalised Mixtures of Experts, Independent Ex-
pert Training, and Learning Classifier Systems. Technical Report 2007–02, Univer-
sity of Bath, U.K (2007)

22. Chipman, H.A., George, E.I., McCulloch, R.E.: Bayesian CART Model Search.
Journal of the American Statistical Association 93(443), 935–948 (1998)

23. Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.M., Gen, M., Sen,
S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.): GECCO-2001: Proceed-
ings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann,
San Francisco (2001)

24. Thierens, D., Beyer, H.G., Birattari, M., Bongard, J., Branke, J., Clark, J.A.,
Cliff, D., Congdon, C.B., Deb, K., Doerr, B., Kovacs, T., Kumar, S., Miller, J.F.,
Moore, J., Neumann, F., Pelikan, M., Poli, R., Sastry, K., Stanley, K.O., Stützle,
T., Watson, R.A., Wegener, I. (eds.): GECCO-2007: Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation Conference 2007, vol. 2.
ACM Press, New York (2007)

A Principled Foundation for LCS 95

A The Bayesian LCS Model

The following table gives an overview over the Bayesian LCS model with all its
components.

Data, Model Structure, and Likelihood

N observations {(xn, yn)}, xn ∈ X = RDX , yn ∈ Y = R
Model structure M = {K, M}, k = 1, . . . , K
K classifiers
Matching functions M = {mk : X → [0, 1]}

Likelihood p(Y |X, W , τ , Z) =
∏N

n=1
∏K

k=1 p(yn|xn, wk, τk)znk

Classifiers

Variables Weight matrices W = {wk}, wk ∈ RDX

Noise precisions τ = {τk}
Weight shrinkage priors α = {αk}
Noise precision prior parameters aτ , bτ

α-hyperprior parameters aα, bα

Model p(y|x, wk, τk) = N (y|wT
k x, τ−1

k)
Priors p(wk, τk|αk) = N (wk|0, (αkτk)−1I)Gam(τk|aτ , bτ)

p(αk) = Gam(αk|aα, bα)

Gating

Variables Latent variables Z = {zn}, zn = (zn1, . . . , znK)T ∈ {0, 1}K, 1-of-K
Gating weight vectors V = {vk}, vk ∈ RDV

Gating weight shrinkage priors β = {βk}
β-hyperprior parameters aβ , bβ

Model p(Z|X, V , M) =
∏N

n=1
∏K

k=1 gk(xn)znk

gk(x) ≡ p(zk = 1|x, vk, mk) = mk(x) exp(vT
k ϑ(x))

�K
j=1 mj(x) exp(vT

j ϑ(x))

Priors p(vk|βk) = N (vk|0, β−1
k I)

p(βk) = Gam(βk|aβ , bβ)

Revisiting UCS: Description, Fitness Sharing,
and Comparison with XCS

Albert Orriols-Puig and Ester Bernadó-Mansilla

Grup de Recerca en Sistemes Intel·ligents
Enginyeria i Arquitectura La Salle

Universitat Ramon Llull
Quatre Camins 2, 08022 Barcelona (Spain)

{aorriols,esterb}@salle.url.edu

Abstract. This paper provides a deep insight into the learning mecha-
nisms of UCS, a learning classifier system (LCS) derived from XCS that
works under a supervised learning scheme. A complete description of the
system is given with the aim of being useful as an implementation guide.
Besides, we review the fitness computation, based on the individual ac-
curacy of each rule, and introduce a fitness sharing scheme to UCS. We
analyze the dynamics of UCS both with fitness sharing and without fit-
ness sharing over five binary-input problems widely used in the LCSs
framework. Also XCS is included in the comparison to analyze the dif-
ferences in behavior between both systems. Results show the benefits
of fitness sharing in all the tested problems, specially those with class
imbalances. Comparison with XCS highlights the dynamics differences
between both systems.

1 Introduction

UCS [1] is a learning classifier system (LCS) derived from XCS [22,23] that
works under a supervised learning scheme. UCS inherits the main components
and structure of XCS, which are adapted for supervised learning. The main
differences between both systems are related to 1) classifier’s parameters and
their update, and to 2) the lack of a prediction array in UCS. UCS’s fitness is
based on accuracy, computed as the percentage of correct classifications. This
leads UCS to explore the consistently correct classifiers and thus evolve only
best action maps.

Previous studies on artificial problems showed that UCS could overcome the
fitness dilemma [6] that appeared in some problem categories in XCS, whose
effect is a misleading pressure that tends to guide search in the wrong direction.
Also evolution of best action maps was proved to be an efficient way of searching
the search space, specially in large search spaces. UCS also showed to be com-
petitive in real-world problems with XCS, as well as with some non-evolutionary
learners such as C4.5 [19] and SMO [21].

Although UCS’s results seem promising, there are still some open issues to
be addressed. In [1], UCS’s lack of fitness sharing was identified as a potential

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 96–116, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 97

weakness. Fitness sharing is attributed to allow for better resource distribution
among the different niches. Without fitness sharing, premature good rules can
overtake the population, preventing potential niches from being explored and
maintained in the population. Although this effect was not strongly observed in
previous analyses, we acknowledge that, as current challenges such as unbalanced
class problems are posed to UCS [18], the effect may become important. The
literature has also proved that fitness sharing is beneficial for LCSs [3,7]. Other
advances of the GA and LCS fields such as tournament selection [4] are also
introduced in UCS to further optimize performance.

The aim of this paper is two-fold. Firstly, we want to provide a deeper descrip-
tion of all UCS components, detailed enough to be used as an implementation
guide. The description also assembles other operators from XCS such as specify
and includes new improvements of LCSs such as tournament selection. Also, a
fitness sharing scheme is designed for UCS.

Secondly, the paper makes a comparison of UCS without fitness sharing, UCS
with fitness sharing, and XCS. We use a testbed consisting of five binary-input
classification problems that gather different complexity factors. Three of them
were already used in [1]: a) the parity, b) the decoder, and c) the position
problem. They represent respectively two cases of strong specialization with
two classes (a) and multiple classes (b), and a case with multiple classes and
non-uniform distribution of examples per class (c). We further add the imbal-
anced multiplexer problem and the multiplexer problem with noise. The designed
testbed provides representative conditions of real-world problems for analyzing
whether fitness sharing improves performance. By comparing UCS with XCS we
update and enhance the previous comparison performed in [1] to the current
settings. We seek to understand the dynamics of each approach and analyze
conditions where each approach is better suited. The paper aims at enhancing
our current comprehension of LCSs, and UCS in particular, and at providing a
framework for further UCS system investigations and developments.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces XCS. Next, UCS is described in detail, including UCS’s fitness sharing
version. Section 4 analyzes UCS with both fitness sharing and non-sharing, also
compared to XCS. Finally, Section 5 summarizes the main differences observed,
and Section 6 provides the main conclusions of our work. Appendix A provides
a full explanation of all problems used in the comparison.

2 XCS in a Nutshell

This section provides a brief introduction to the XCS classifier system. The
reader is referred to [22,23] for a detailed explanation and to [8] for an algorith-
mic description. Although XCS is applicable to several domains, such as rein-
forcement learning tasks [15] and function approximations [24], we will restrict
our description to XCS as a pure classifier system.

XCS is an accuracy-based learning classifier system introduced by S.W. Wilson
[22]. The main difference between XCS and previous strength-based LCSs is that

98 A. Orriols-Puig and E. Bernadó-Mansilla

XCS bases fitness on the accuracy of the rewardprediction instead of on the reward
itself. This led XCS to avoid the presence of strong overgenerals that appeared
in strength-based LCS [11]. The accuracy-based approach makes XCS evolve a
complete action map (denoted as [O]) of the environment, evolving not only high-
rewarded rules (i.e., consistently correct rules), but also consistently incorrect
rules (i.e., rules with zero prediction and low error.).

XCS works as an online learner. For each input example, XCS forms the
match set [M] consisting of all classifiers with matching condition. If not enough
classes are covered in [M] XCS triggers the covering operator, which creates
new classifiers with uncovered classes. Under pure exploration, a class is selected
randomly, and all classifiers predicting that class form the action set [A]. The
class is sent to the environment and the received reward is used to update the
parameters of the classifiers in [A]. Eventually, the genetic algorithm is triggered
inside the action set [A], and subsumption may be applied to favor accurate and
general classifiers. Under exploit mode, XCS predicts the most voted class for
each input example. The class vote is computed as a fitness weighted average of
the predictions of all classifiers advocating that class.

3 Description of UCS

3.1 UCS Components

UCS is an accuracy-based learning classifier system introduced in [1]. It inherits
the features of XCS, but specializes them for supervised learning tasks. UCS
mainly differs from XCS in two respects. Firstly, the performance component
is adjusted to a supervised learning scheme. As the class is provided with each
new example, UCS only explores the class of the input examples. This implies
that UCS only evolves high-rewarded classifiers, that is, the best action map
[B]. Secondly, accuracy is computed differently in both systems. UCS computes
accuracy as the percentage of correct classifications instead of computing it from
the prediction error.

In the following, we give a deeper insight into UCS by explaining each com-
ponent of the system.

Classifier’s Parameters. In UCS, classifier’s parameters are the following:
a) accuracy acc; b) fitness F ; c) correct set size cs; d) numerosity num; and e)
experience exp. Accuracy and fitness are measures of the quality of the classifier.
The correct set size is the estimated average size of all the correct sets where the
classifier participates. Numerosity is the number of copies of the classifier, and
experience is the number of times a classifier has participated in a match set.

Performance Component. UCS is an online learner that receives a new input
example x = (x1, ..., xn) at each learning iteration. As it works under a super-
vised learning scheme, also the class c of the example is provided. Then, the
system creates the match set [M], which contains all classifiers in the population
[P] whose condition matches x. Next, all the classifiers in [M] that predict the

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 99

class c form the correct set [C]. If [C] is empty, the covering operator is activated,
creating a new classifier with a generalized condition matching x, and predicting
class c. The remaining classifiers form the incorrect set ![C].

In test mode, a new input example x is provided, and UCS must predict
the associated class. To do that, the match set [M] is created. All classifiers in
[M] emit a vote, weighted by their fitness, for the class they predict. The vote of
young classifiers (i.e., exp < θdel) is decreased by multiplying its vote by exp/θdel

to avoid that poorly evaluated classifiers emit a strong vote if more experienced
classifiers exist. The most-voted class is chosen. New inference schemes have been
proposed in [2]. Under test mode, the population of UCS does not undergo any
change. All update and search mechanisms are disabled.

Parameter Updates. Each time a classifier participates in a match set, its
experience, accuracy and fitness are updated. Firstly, the experience is increased.
Then, the accuracy is computed as the percentage of correct classifications:

acc =
number of correct classifications

experience
(1)

Thus, accuracy is a cumulative average of correct classifications over all matches
of the classifier. Next, fitness is updated according to the following formula:

Fmicro = (acc)ν (2)

where ν is a constant set by the user that determines the strength pressure
toward accurate classifiers (a common value is 10). Thus, fitness is calculated
individually for each microclassifier, and it is not shared. The fitness of a macro-
classifier Fmacro is obtained by:

Fmacro = Fmicro · num (3)

Finally, each time the classifier participates in [C], the correct set size cs is
updated. cs is computed as the arithmetic average of all sizes of the correct sets
in which the classifier has taken part.

Discovery Component. The genetic algorithm (GA) is used as the primary
search mechanism to discover new promising rules. The GA is applied to [C],
following the same procedure as in XCS. It selects two parents from [C] with
a probability that depends on classifier’s fitness. The same selection schemes
applied in XCS can be used in UCS, such as proportional selection or tournament
selection. The two parents are copied, creating two new children, which are
recombined and mutated with probabilities χ and µ respectively.

Finally, both children are introduced into the population. First, each offspring
is checked for subsumption with its parents. The subsumption mechanism is
adapted from XCS as follows: if one of the parents is sufficiently experienced
(exp > θsub), accurate (acc > acc0) and more general than the offspring, then
the offspring is not introduced into the population and the numerosity of this
parent is increased. If the offspring cannot be subsumed for any of its parents, it
is inserted in the population, deleting another classifier if the population is full.

100 A. Orriols-Puig and E. Bernadó-Mansilla

Specify. The specify operator [14] is also adapted from XCS. At each learn-
ing iteration, the accuracy of the correct set acc[C] is compared to the average
accuracy of the whole population acc[P]. If acc[C] ≤ acc[P]

2 and the average ex-
perience of the classifiers in [C] is greater than NSp (exp[C] ≥ NSp), a classifier
is randomly selected from [C], with probability inversely proportional to its ac-
curacy. Then, the classifier is copied, and its don’t care symbols are specified
—to the value of the input example— with probability PSp. Finally, the new
classifier is introduced in the population, removing potentially poor classifiers if
the population is full.

Deletion. The deletion probability of each rule is calculated as:

pdel =

{
cs·num·F[P]

Fmicro
if exp > θdel and Fmicro < δF[P]

cs · num otherwise
(4)

where δ and θdel are parameters set by the user, and F[P] is the average fitness
of the population. In this way, deletion will tend to balance resources among the
different correct sets, while removing low-fitness classifiers from the population.
As fitness is computed from the percentage of correct classifications of a classifier,
classifiers that predict wrong classes are not maintained in the population, and
so, only the best action map evolves.

Classifier Parameters Initialization. UCS is very robust to parameter ini-
tialization since the initial value of most of the parameters is lost the first time
that the classifier participates in a match set. When a classifier is created by
covering, its parameters are set to: exp = 1, num = 1, cs = 1, acc = 1 and F
= 1. If a classifier is created by the GA, its parameters are initialized to: exp =
1, num = 1, cs = (csp1 + csp2)/2 (where p1 and p2 denote each of the parents),
acc = 1 and F = 1.

3.2 Why Should We Not Share Fitness?

UCS showed to perform competitively with other machine learning techniques in
both artificial and real-world domains [1], even without fitness sharing. However,
there are some analyses in the literature that demonstrate the advantages of shar-
ing fitness in learning classifier systems [3] and, in general, in genetic algorithms [9].

Thus, we introduce a new fitness computation scheme that shares fitness,
similarly to XCS, with the aim of comparing its advantages and disadvantages
with a non sharing scheme. In the remainder of the paper, UCS without sharing
is referred as UCSns, and UCS with sharing as UCSs.

Parameters update with fitness sharing works as follows. Experience, correct
set size and accuracy are computed as in UCSns. However, fitness is shared
among all classifiers in [M]. Firstly, a new accuracy k is calculated, which dis-
criminates between accurate and inaccurate classifiers. For classifiers belonging
to ![C], kcl∈![C] = 0. For classifiers belonging to [C], k is computed as follows:

kcl∈[C] =

⎧⎨⎩1 if acc > acc0

α(acc/acc0)ν otherwise

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 101

Then, a relative accuracy k′ is calculated:

k′
cl =

kcl · numcl∑
cli∈[M] kcli · numcli

(5)

And fitness is updated from k′:

F = F + β · (k′ − F) (6)

Let’s note that, under this scheme, the computed fitness corresponds to the
macroclassifier’s fitness, as numerosities are involved in the formulas. Whenever
the microclassifier’s fitness is needed (e.g., in the deletion algorithm), we use the
relation of formula 3.

4 XCS and UCS in Binary-Input Problems

4.1 Methodology

The aim of this section is to analyze different aspects of UCS and XCS learning
behavior. We base our analysis on five artificial problems that gather some com-
plexity factors said to affect the performance of LCSs [12,1]: a) a binary-class
problem; b) a multiclass problem; c) an imbalanced binary-class problem; d) an
imbalanced multiclass problem; and e) a noisy problem. For a detailed descrip-
tion of each problem the reader is referred to appendix A. Each problem was
run with UCSns, UCSs and XCS.

If not stated differently, we used the following standard configuration for XCS:
P# = 0.6, β = 0.2, α = 0.1, ν = 5, θGA = 25, selection = tournament, χ = 0.8,
µ = 0.04, θdel = 20, δ = 0.1, GAsub = true, [A]sub = false, θsub = 20. When
specify was enabled, Ns = 0.5 and Ps = 0.5. Parameters for UCS had the same
values as in XCS, with acc0=0.999 and ν=10.

The maximum population size of XCS and UCS was configured depending on
the size of the optimal population that the systems were expected to evolve. XCS
evolves a complete action map [O] [12], which consist of both highly rewarded
rules1 and poorly rewarded rules2 with low error. On the other hand, UCS
evolves the best action map [B] [1], which includes only highly rewarded rules.
As proposed in [1], we set population sizes to N = 25 · |[O]| in XCS, and to
N = 25 · |[B]| in UCS For each problem, we sought to find the parameters’
configuration that permitted to obtain the best results. Thus, any changes on
the parameter settings will be properly stated.

Different metrics were used to evaluate performance. We discarded accuracy
as the measure of performance, since it does not provide enough evidence of ef-
fective genetic search, as pointed out in [13]. Instead of accuracy, the proportion

1 Rules with high prediction and low error.
2 Rules with low prediction and low error.

102 A. Orriols-Puig and E. Bernadó-Mansilla

of the optimal action map achieved %[O] [12] was proposed as being a better in-
dicator of the progress of the genetic search [13]. However, UCS and XCS evolve
different optimal populations: XCS creates the complete action map [O], whereas
UCS represents a best action map [B]. To allow a fair comparison, we only con-
sider the proportion of best action map %[B] achieved by each system. That is, we
only count the percentage of consistently correct rules. Besides, the proportion of
correct classifications of the minority class (TP rate) is also used in imbalanced
binary-class problems.

4.2 Binary-Class Problem: Parity

We tested the LCSs on the parity problem. The parity problem is a binary-
class problem, whose class is 1 if the number of ones in the input is odd and
0 otherwise. The problem does not allow any generalization in the condition
rules. Please, see appendix A.1 for the details. We ran the parity problem with
condition lengths from 3 to 9 and the standard configuration. To stress specificity,
we enabled the specify operator in XCS and UCS.

Figure 1 depicts the proportion of the best action map %[B] achieved by
UCSns, UCSs and XCS. Curves are averages of ten runs. The plots show that
UCSs converges earlier than UCSns, which shows up the advantages of fitness
sharing. This is specially observed for larger input lengths, such as for 8 and
9 inputs. UCSs also improves XCS, and in turn XCS slightly improves UCSns.
Next, we discuss these results in more detail.

Table 1. Accuracy and fitness of UCSns’s classifiers along the generality-specifity
dimension, depicted for the parity problem with � = 4

Condition Class Accuracy Fitness
1 #### 0 0.5 0.00097
2 0### 0 0.5 0.00097
3 00## 0 0.5 0.00097
4 000# 0 0.5 0.00097
5 0000 0 1 1

a) Why is the Parity Problem Difficult for Both Systems?
The parity problem appears to be a hard problem for both learners. Its main dif-
ficulty can be attributed to the lack of fitness guidance toward optimal classifiers.
As some generalization is introduced by the covering operator, XCS and UCS have
to drive the population from generality to specificity. However, the fitness pressure
does not correctly lead to specificity. That is, specifying one bit of an overgeneral
classifier does not increase its accuracy unless all bits are specified. Table 1 shows
the evolution that would suffer the most overgeneral classifier to become an opti-
mal classifier in UCSns in the parity problem with =4. At each step, one of the
don’t care bits is specified. Note that accuracy, and so, fitness, remain constant
during all the process until the optimal classifier is achieved. However, we would
expect that the specification of one bit should result in a fitter classifier, since it

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 103

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSns in Par

Par3
Par4
Par5
Par6
Par7
Par8
Par9

(a) UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSs in Par

Par3
Par4
Par5
Par6
Par7
Par8
Par9

(b) UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

XCS in Par

Par3
Par4
Par5
Par6
Par7
Par8
Par9

(c) XCS

Fig. 1. Proportion of the best action map achieved by UCSns (a), UCSs (b) and XCS
(c) in the parity problem with condition lengths from �=3 to �=9

approaches the optimum classifier (in which all the bits are specified). Therefore,
the fitness is not guiding toward optimal optimal solutions, and so, an optimal
classifier can only be obtained randomly. This example is also generalizable to
XCS, for which fitness guidance is carefully analyzed in [6].

b) Exploring Only High-Rewarded Niches
Under a pure explore regime, XCS uniformly explores niches containing high-
rewarded rules and niches with consistently incorrect rules (provided that ex-
amples come uniformly). Actually, the system maintains a complete action map.
On the other hand, UCS explores only the high rewarded niches, i.e., the best
action map.

Thus, UCS is expected to evolve the best action map in half the time XCS
does. However, results show that both systems need a similar number of learn-
ing iterations to converge. Our hypothesis is that the exploration of consistently
incorrect rules may help XCS to discover consistently correct rules. For exam-
ple, if XCS evolves a consistently incorrect classifier such as 0001:0, XCS may
discover the consistently correct classifier 0001:1 by mutation of the class bit.
Thus, XCS can discover parts of [B] while exploring low-rewarded niches.

104 A. Orriols-Puig and E. Bernadó-Mansilla

c) The Advantages of Sharing Fitness
The results show that the convergence curves in UCSs and XCS are steeper
than in UCSns. After some initial iterations, the systems start to evolve some
optimal classifiers. In the case of UCSs and XCS, once the first optimal classifiers
are discovered, the convergence curves raise quickly. This effect is due to fitness
sharing. Under fitness sharing, the discovery of a new optimal classifier makes the
fitness of overgeneral classifiers that participate in the same action/correct set
decrease quickly. This produces a) a higher pressure toward overgeneral deletion
and b) a higher selective pressure toward specific classifiers in the GA. Thus,
the GA is likely to produce new specific, and so, optimal classifiers. Without
fitness sharing, overgeneral classifiers maintain the same fitness along the whole
learning process. This effect is specially strong in imbalanced data sets, where
overgeneral classifiers have higher accuracy.

4.3 Multiclass Problem: Decoder

In this section we aim at analyzing the behavior of XCS and UCS on multiclass
problems. For this purpose, we use the decoder problem, which has + 1 classes,
being the string length. The best action map contains 2� specific classifiers, while
the complete action map has (+1)·2� classifiers. See appendix A.2 for the details.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSns in Dec

Dec3
Dec4
Dec5
Dec6

(a) UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSs in Dec

Dec3
Dec4
Dec5
Dec6

(b) UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

XCS in Dec

Dec3
Dec4
Dec5
Dec6

(c) XCS

Fig. 2. Proportion of the best action map achieved by UCSns (a), UCSs (b) and XCS
(c) in the decoder problem with condition lengths from �=3 to �=6. Note that UCS is
shown for 50,000 explore trials, while XCS is shown for 100,000 trials.

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 105

Figure 2 depicts the proportion of the best action maps achieved by UCSns,
UCSs and XCS. The results evidence a much better performance of UCS,
specially for higher condition lengths. With a condition length =6, UCSs needs
up to 5,000 learning iterations to discover the complete best action map, whereas
XCS discovers only 40% of it in 100,000 iterations. This huge difference between
XCS and UCS could mainly be explained by a) the explore regime and b) the
accuracy guidance toward the optimal population.

a) Explore Regime
The first aspect that hinders the performance of XCS is the explore regime
used. As XCS explores uniformly each class, only 1 of each + 1 explores will
be made on the class of the input instance. The other explores will be focused
on classifiers that predict wrong classes. This issue, which appeared to have
low effect in the parity problem, now takes importance since the number of
classes increases. Moreover, the hamming distance between consistently incorrect
classifiers and correct classifiers is bigger than in the parity problem. So, in the
decoder problem, it is more difficult to create a high-rewarded classifier while
exploring a low-rewarded niche.

b) Accuracy Guidance Toward Optimal Population
The second point that influences the convergence of XCS is the way in which
fitness guides to the solution. This issue was initially termed by Butz et al.
as the fitness dilemma [6]. Let’s suppose we have the overgeneral classifier cl1
1###:8, whose estimated parameters are P=125 and ε = 218.75 [6]. XCS is
expected to drive cl1 to the classifier 1000:8. Imagine now that, either mutation
or specify generates the classifier cl2 10##:8, whose parameter estimates are
P=250 and ε = 375. That is, as the classifier approaches the optimal one, the
error increases. As long as the classifier moves towards the right direction, it gets
smaller fitness, which consequently means fewer genetic event opportunities and
higher deletion probabilities. Thus, there is no effective fitness pressure towards
optimal classifiers.

UCS overcomes the fitness dilemma, because the accuracy is calculated as the
percentage of correct classifications. Therefore, classifier cl2 would have higher
accuracy than cl1. In that way, UCS’s accuracy guidance does not mislead the
search.

Finally, it can be observed that UCSs converges slightly quicker than UCSns.
As in the parity problem, we ascribe this behavior to the fact that fitness sharing
makes a stronger pressure toward the optimal classifiers as long as they are
discovered.

4.4 Imbalanced Binary-Class Problem: Imbalanced Multiplexer

Real-world problems often have smaller proportion of examples of one class than
the others. It has been widely accepted that this issue, addressed as the class
imbalance problem [10], could hinder the performance of some well-known learn-
ers. Recent studies [16,18] have shown that UCSns suffers from class imbalances,

106 A. Orriols-Puig and E. Bernadó-Mansilla

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06

T
P

 r
at

e

Learning Iterations

UCSns in Mux

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

(a) TP rate in UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSns in Mux

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

(b) %[B] in UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06

T
P

 r
at

e

Learning Iterations

UCSs in Mux

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

(c) TP rate in UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSs in Mux

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

(d) %[B] in UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06

T
P

 r
at

e

Learning Iterations

XCS in Mux

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

(e) TP rate in XCS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

XCS in Mux

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

(f) %[B] in XCS

Fig. 3. TP rate and % of [B] achieved by UCSns, UCSs and XCS in the 11-bit multi-
plexer problem with imbalance levels from i=0 to i=9

while different mechanisms acting at the classifier level or at the sampling level
can alleviate the effect. On the other hand, XCS has shown to be highly robust to
class imbalances if its parameters are set appropriately (see [17]). In this section
we compare the behavior of XCS and UCS in a controlled imbalanced problem,
and besides, analyze the influence of fitness sharing in such conditions.

We used the imbalanced 11-bit multiplexer (see appendix A.4), where minority
class instances were sampled with a proportion Paccept. In the remainder of the
paper we use i to refer to the imbalance level, that is, Paccept = 1

2i .

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 107

We ran XCS and UCS with the 11-bit multiplexer and imbalance levels from
i=0 to i=9. Parameters were set as suggested in [17]: for high imbalance levels, β
should be increased to allow more reliable parameter estimates, while θGA should
be decreased to allow more uniform genetic opportunities among the different
niches. Moreover, we only apply subsumption when the involved classifiers have
received, at least, 2i parameter updates. Thus, for XCS we used the standard
configuration but setting β = {0.04, 0.02, 0.01, 0.005}, θGA = {200, 400, 800,
1600}, and θsub = {64, 128, 256, 512} for i={6, 7, 8, 9} respectively. As UCS
appeared to be less sensitive to parameters’ settings in previous experiments
(not reported here), we maintained the standard configuration. Only for i≥6,
θGA = 50 and β = 0.02.

Figure 3 shows the proportion of correct classifications of the minority class
(TP rate) and the proportion of the best action map achieved by each system.
We do not show the proportion of correct classifications of the majority class
since it raises to 100% in few iterations. The results show that UCSns fails at low
imbalance levels (it only converges for i≤3), whereas XCS solves the problem up
to i=8, and UCSs up to i=9.

Let’s analyze the behavior of UCSns. Figure 3(b) shows that, for i≥4, UCSns
evolves only half of the best action map. Looking at the populations evolved
(see table 2 for i = 6) we observed that UCSns discovered all optimal clas-
sifiers predicting the minority class (class 1). However, optimal classifiers pre-
dicting the majority class were replaced by the most overgeneral classifier clovg:
###########:0. This behavior is related to the accuracy computation and the
lack of fitness sharing in UCSns. At any imbalance level, the accuracy expected
for clovg is accclovg = 1 − Paccept, and the fitness is computed as a power of the
accuracy. For i=6, accclovg = 0.9843, which gives a high fitness value. The classi-
fier’s accuracy is still lower than acc0 (recall that acc0 is set to 0.999); thus, the
classifier would be considered as inaccurate for subsumption purposes. However,
since clovg participates in 1 − Paccept of all correct sets, the classifier receives
many genetic opportunities, and finally overtakes the population. Increasing ν

Table 2. Most numerous rules evolved in a single run of UCSns with the 11-bit imbal-
anced multiplexer for i=6. Cond. is the classifier’s condition, C. the class it predicts,
and Acc., F., and Num. are the accuracy, fitness and numerosity of the classifier.

Cond. C. Acc. F. Num.

########### 0 0.98 0.86 142
0001####### 1 1.00 1.00 55
001#1###### 1 1.00 1.00 74
010##1##### 1 1.00 1.00 60
011###1#### 1 1.00 1.00 63
100####1### 1 1.00 1.00 57
101#####1## 1 1.00 1.00 69
110######1# 1 1.00 1.00 57
111#######1 1 1.00 1.00 68

...

108 A. Orriols-Puig and E. Bernadó-Mansilla

to make a stronger pressure toward accuracy does not significantly improve the
results for high imbalance levels.

This effect does not appear in XCS and UCSs with appropriate parameter
settings. As both systems share fitness, the fitness of overgeneral classifiers would
considerably diminish when an optimal classifier is discovered. Figures 3(c)-3(f)
show the improvement obtained with UCSs and XCS. UCSs shows to perform
slightly better at high imbalance levels, being able to solve the 11-bit multiplexer
even for i=9, in which XCS fails. At these regimes of such low supply of minority
class examples, exploring only the correct class is crucial to maximally benefit
from exploration. In fact, as XCS explores half of the correct actions for a given
number of iterations (with respect to UCS), one could expect that UCSs solves
the multiplexer up to one imbalance level greater than XCS does.

4.5 Imbalanced Multiclass Problem: Position

After analyzing the effects of class imbalance on an artificially imbalanced prob-
lem, we introduce the position problem, which intrinsically has unequal distribu-
tion of examples per class, and a number of classes that increases linearly with
the condition length (see appendix A.3 for a description of the problem).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSns in Pos

Pos3
Pos4
Pos5
Pos6
Pos7
Pos8
Pos9

(a) UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSs in Pos

Pos3
Pos4
Pos5
Pos6
Pos7
Pos8
Pos9

(b) UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

XCS in Pos

Pos3
Pos4
Pos5
Pos6
Pos7
Pos8
Pos9

(c) XCS

Fig. 4. Proportion of the best action map achieved by UCSns (a), UCSs (b) and XCS
(c) in the position problem with condition lengths from l=3 to l=9

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 109

We ran UCSns, UCSs and XCS with the position problem and the standard
configuration. Specify was disabled to introduce more generalization pressure.
Figure 4 shows the proportion of the best action map achieved.

The position problem combines the effects of class imbalances and fitness
dilemma in a single problem. The best action map consists of classifiers with
different levels of generality. Thus, the most specific rules are expected to suffer
from fewer genetic opportunities, since they are activated less often [1]. The
results obtained support this hypothesis. In all cases, the shape of the curves have
a steep increase at the beginning —where the most general rules are discovered—,
and afterward, the curves improve slowly. Examining the populations (not shown
for brevity), we confirmed that the most specific rules were difficult to discover.

In addition, the results obtained with XCS are poorer than with UCS. This
can be again ascribed to the fitness dilemma, as in the decoder problem. That is,
there is a misleading pressure toward optimal rules. Figure 5 shows an example of
how the prediction error increases when driving the overgeneral rule ## . . . # : 0
to the optimal classifier 00 . . . : 0 for different input lengths . This, coupled
together with the few genetic opportunities that the most specific classifiers
receive, makes the discovery of these classifiers very hard.

Finally, UCSs slightly outperforms UCSns. For position with = 9, after
100,000 iterations, UCSs is able to discover all the best map while UCSns dis-
covers 90% of the best action map. Again, fitness sharing helps to discover the
most specific classifiers.

4.6 Noisy Problem: Multiplexer with Alternating Noise

To conclude the study, we analyze the effects of training XCS and UCS on noisy
environments. To do that, we used the 20-bit multiplexer introducing alternating
noise (denoted as muxan). That is, the class of a input instance was flipped with
probability Px, as proposed in [5].

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500

Length of the position problem

E
rr

or

Increase of Error with specificity

Fig. 5. Error of XCS’s classifiers along the generality-specificity dimension. The curve
depicts how the error of the most overgeneral classifier ## . . . # : 0 evolves until
obtaining the maximally accurate rule 00 . . . : 0.

110 A. Orriols-Puig and E. Bernadó-Mansilla

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSns in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(a) Calt1 UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSns in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(b) Calt2 UCSns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSns in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(c) Calt3 UCS ns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSs in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(d) Calt1 UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSs in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(e) Calt2 UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

UCSs in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(f) Calt3 UCSs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

XCS in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(g) Calt1 XCS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

XCS in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(h) Calt2 XCS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

%
 o

f t
he

 B
es

t A
ct

io
n

M
ap

Learning Iterations

XCS in Mux with Alternating Noise

Px=0.05
Px=0.10
Px=0.15

(i) Calt3 XCS

Fig. 6. Proportion of the best action map achieved by UCSns, UCSs, and XCS in
the 20-bit multiplexer with alternating noise and with configurations Calt1 , Calt2 , and
Calt3

The effect of noise may be related to the effect of undersampled classes to
some extent. The system receives wrongly labeled instances in a percentage Px

of the explore trials. The key difference here is that each instance is correctly
labeled in a high proportion of samples (1 - Px), and only in small proportion of
cases (Px), the instance comes with the wrong class. Thus, we aim at analyzing
the ability of each system to obviate noisy instances in favor of non-noisy ones.

We ran UCSns, UCSs and XCS in the 20-bit multiplexer with alternating
noises Px = {0.05, 0.10, 0.15} and three different parameter configurations Calt1 ,
Calt2 and Calt3 . Calt1 is the standard configuration with specify disabled. Calt2

sets β=0.01 and θGA = 100 to have more reliable parameters estimates before
the GA triggers. Finally, Calt3 is based on Calt1 , setting acc0 = 1 − Px and
ε0 = Px ∗ Rmax to let the system admit the noise of the data. In all runs, the
population size was set to 2,000 in both UCS and XCS3. Figure 6 shows the
percentage of optimal population achieved for each setting.

3 UCS population size is equal to XCS, because the effect of wrongly labeled instances
makes UCS try to evolve consistently incorrect rules to fit to noise.

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 111

With Calt1 setting, UCSns gets higher performance than UCSs and XCS,
specially for the highest levels of noise (see figures 6(a), 6(d) and 6(g)). This
behavior can be attributed to the way that classifier parameters are estimated.
Both XCS and UCSs compute a windowed average of fitness by means of the
learning parameter β. In noisy environments, the parameter averages oscillate
and cannot stabilize properly. So, high levels of noise require low values of β.
As UCSns computes fitness as a power of the accuracy, parameter values of
experienced classifiers remain steady.

Figures 6(b), 6(e) and 6(h) show the proportion of the best action map
achieved with Calt2 setting, which is configured to lead to more stable para-
meters estimates. The results show a clear improvement of UCSs and XCS with
respect to configuration Calt1 . This proves our hypothesis that higher levels of
noise require lower β values to allow for better parameter stabilization, coupled
with higher θGA to let the genetic algorithm operate with better estimates. UCSs
specially benefits from that, nearly reaching 100% of the best action map in few
iterations. Results of UCSns are the same as those obtained with Calt1 setting,
as it does not use β in the fitness estimate.

Finally, figures 6(c), 6(f) and 6(i) show the experiments with Calt3 setting,
which fits acc0 and ε0 to consider noise as negligible. This setting allows op-
timal classifiers, which include a certain percentage of noise, to be considered
as accurate. This lets optimal classifiers have higher accuracy estimates (in the
case of UCSs and XCS). Besides, subsumption would be applied toward optimal
classifiers increasing the pressure toward them. Results appear better to those
obtained with Calt1 in all LCSs. With respect to Calt2 , we obtained better results
than with Calt3 in UCSns and XCS. Combining Calt2 and Calt3 benefits from
the advantages of each approach (not shown for brevity).

5 Summing Up

In this section, we briefly sum up the differences observed when sharing is intro-
duced in UCS, as well as the different dynamics between UCS and XCS.

Explore Regime. Exploring only the class of the input instance (as UCS does)
appeared to be beneficial in problems with high number of classes, e.g., decoder
and position. Moreover, it helped to solve the imbalanced multiplexer up to one
imbalance level higher than XCS, in an extreme low supply of minority class
instances. Finally, the effects were nearly imperceptible in the parity problem,
since the exploration of the low-rewarded niches could lead to discover high-
rewarded optimal classifiers.

We used a pure explore regime in XCS, where each available class is uniformly
explored for each possible input. Since UCS proves that a more directed search
toward the correct class generally speeds up convergence, we could also think
of other explore regimes in XCS. Training in XCS could be based on an explo-
ration regime that gradually changes from pure exploration toward increasing
exploitation, similarly to schemes such as softmax [20]. This remains an open
issue for further work.

112 A. Orriols-Puig and E. Bernadó-Mansilla

Accuracy Guidance. The results of XCS in some domains showed the lack of
fitness guidance toward accurate classifiers. This problem, already observed in
previous studies [1,6], was termed the fitness dilemma in [6]. The problem does
not exist in UCS since accuracy is computed directly as the percentage of correct
classifications. We showed that XCS strongly suffers from the fitness dilemma in
the decoder, and to a lower degree, in the position. In these cases, UCS clearly
outperformed XCS. To alleviate this effect, bilateral accuracy was proposed for
XCS [6]. As a future work, we aim to investigate how this approach compares
with UCS.

Fitness Sharing. Fitness sharing speeds up the convergence in all problems
tested. Specially, it appears to be crucial in highly imbalanced data sets to
deter overgeneral classifiers from overtaking the population. UCSns only gave
better performance when parameter estimates were unstable in UCSs due to an
inappropriate setting of the learning parameter β. Anyway, this effect cannot be
attributed to the presence or absence of fitness sharing, but rather to the way
in which fitness is estimated. Recall that UCSns computes fitness as a power
of accuracy, while UCSs computes fitness as a weighted windowed average with
learning parameter β.

Population Size. In the tested problems, UCS evolved best action maps with
less learning iterations. Also smaller population sizes were used in UCS in all
the tested problems, except for the noisy problem. The population evolved by
XCS is generally larger, but comparable to that of UCS in terms of legibility. In
fact, by removing low-rewarded classifiers from XCS’s final population, we get a
set of rules similar to that of UCS (not shown for brevity). Thus, the advantage
of having smaller populations in UCS lies in the reduction of computational
resources.

6 Conclusions

This paper provided insight into the UCS learning classifier system. We improved
the original UCS system as introduced in [1] by including tournament selection
and fitness sharing. Robustness of the modified UCS was proved across different
artificial domains. Specially, fitness sharing was necessary in the imbalanced
multiplexer problem. We suspect that this behavior can be also generalizable
to other imbalanced problems, where overgeneral classifiers can easily become
strong. Using sharing, we allow overgenerals until optimal classifiers start to
evolve. When this happens, fitness of overgeneral classifiers decreases fast by the
effect of sharing fitness with better competing solutions.

The comparison with XCS allowed for a better understanding of the differ-
ences between the two approaches of accuracy-based classifier systems. UCS has
an architecture specifically designed for supervised learning problems. XCS is
more general, and can be applied to multi-step problems, learning only from the
feedback about action consequences. Thus, it is reasonable that XCS does not
perform as well as UCS in supervised environments.

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 113

Two key differences provide UCS with better results in some classification
domains: exploration focuses on best action maps and correct fitness pressures
towards accuracy. Suggestions to improve XCS’s convergence are made, such as
using search regimes with more exploitation guidance. Some methods such as
those based on ε-greedy action-selection or softmax action-selection [20] have
already been tested on reinforcement learners. Their introduction to XCS could
lead to performance similar to UCS. To avoid the effects of the fitness dilemma
in XCS, the use of bilateral accuracy is proposed, as suggested in [6].

The experiments on a noisy problem showed high performance for the LCSs.
Both UCS and XCS could achieve optimal populations with a level of noise up
to 15%. Future work could enhance this study by analyzing LCSs’ tolerance to
increasing levels of noise. Our experiments performed in noisy and imbalanced
problems showed that UCS was less sensitive to parameter settings. In XCS, two
parameters became critical for optimal performance: the learning rate β and the
GA triggering threshold θGA.

Although our results and conclusions are limited to artificial problems, our
experimental testbed contained many complexity factors present in real-world
problems: multiple classes, noisy instances and imbalanced classes, among others.
In this sense, the paper provided some guidelines for further improving learning
classifier systems in increasingly challenging problems.

Acknowledgements

The authors thank the support of Enginyeria i Arquitectura La Salle, Ramon
Llull University, as well as the support of Ministerio de Ciencia y Tecnoloǵıa un-
der project TIN2005-08386-C05-04, and Generalitat de Catalunya under Grants
2005FI-00252 and 2005SGR-00302.

References

1. Bernadó-Mansilla, E., Garrell, J.M.: Accuracy-Based Learning Classifier Systems:
Models, Analysis and Applications to Classification Tasks. Evolutionary Compu-
tation 11(3), 209–238 (2003)

2. Brown, G., Kovacs, T., Marshall, J.A.R.: UCSpv: principled voting in UCS rule
populations. In: GECCO 2007, pp. 1774–1781. ACM Press, New York (2007)

3. Bull, L., Hurst, J.: ZCS Redux. Evolutionary Computation 10(2), 185–205 (2002)
4. Butz, M.V., Sastry, K., Goldberg, D.E.: Strong, stable, and reliable fitness pres-

sure in XCS due to tournament selection. Genetic Programming and Evolvable
Machines 6(1), 53–77 (2005)

5. Butz, M.V.: Rule-Based Evolutionary Online Learning Systems: A Principled Ap-
proach to LCS Analysis and Design. In: Studies in Fuzziness and Soft Computing,
vol. 109. Springer, Heidelberg (2006)

6. Butz, M.V., Goldberg, D., Tharankunnel, K.: Analysis and improvement of fit-
ness exploration in XCS: Bounding models, tournament selection, and bilateral
accuracy. Evolutionary Computation 11(3), 239–277 (2003)

114 A. Orriols-Puig and E. Bernadó-Mansilla

7. Butz, M.V., Goldberg, D.E., Lanzi, P.L.: Effect of pure error-based fitness in XCS.
In: Kovacs, T., Llorà, X., Takadama, K., Lanzi, P.L., Stolzmann, W., Wilson, S.W.
(eds.) IWLCS 2003. LNCS (LNAI), vol. 4399, pp. 104–114. Springer, Heidelberg
(2007)

8. Butz, M.V., Wilson, S.W.: An algorithmic description of XCS. In: Lanzi, P.L.,
Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp.
253–272. Springer, Heidelberg (2001)

9. Harik, G.: Finding Multiple Solutions in Problems of Bounded Difficulty. Technical
report, IlliGAL Report No. 94002, Urbana-Champaign IL 61801, USA (May 1994)

10. Japkowicz, N., Stephen, S.: The Class Imbalance Problem: A Systematic Study.
Intelligent Data Analisis, 6(5), 429–450 (2002)

11. Kovacs, T.: Strength or Accuracy? Fitness Calculation for Classifier Systems. In:
Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI),
vol. 1813, pp. 143–160. Springer, Heidelberg (2000)

12. Kovacs, T., Kerber, M.: What makes a problem hard for XCS. In: Lanzi, P.L.,
Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp.
80–99. Springer, Heidelberg (2001)

13. Kovacs, T., Kerber, M.: High Classification Accuracy does not Imply Effective
Genetic Search. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp.
785–796. Springer, Heidelberg (2004)

14. Lanzi, P.L.: A Study of the Generalization Capabilities of XCS. In: Bäck, T. (ed.)
Proc. of the Seventh Int. Conf. on Genetic Algorithms, pp. 418–425. Morgan Kauf-
mann, San Francisco (1997)

15. Lanzi, P.L.: Learning Classifier Systems: A Reinforcement Learning Perspective.
In: Studies in Fuzziness and Soft Computing, vol. 183, pp. 267–284. Springer,
Heidelberg (2005)

16. Orriols-Puig, A., Bernadó-Mansilla, E.: The Class Imbalance Problem in UCS Clas-
sifier System: Fitness Adaptation. In: Congress on Evolutionary Computation, Ed-
inburgh, UK, 2-5 September 2005, vol. 1, pp. 604–611. IEEE, Los Alamitos (2005)

17. Orriols-Puig, A., Bernadó-Mansilla, E.: Bounding XCS Parameters for Unbalanced
Datasets. In: GECCO 2006, pp. 1561–1568. ACM Press, New York (2006)

18. Orriols-Puig, A., Bernadó-Mansilla, E.: The Class Imbalance Problem in UCS Clas-
sifier System: A Preliminary Study. In: Kovacs, T., Llorà, X., Takadama, K., Lanzi,
P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2003. LNCS (LNAI), vol. 4399,
pp. 161–180. Springer, Heidelberg (2007)

19. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers, San Mateo (1995)

20. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press,
Cambridge (1998)

21. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
22. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computa-

tion 3(2), 149–175 (1995)
23. Wilson, S.W.: Generalization in the XCS Classifier System. In: Genetic Program-

ming: Proceedings of the Third Annual Conference, pp. 665–674. Morgan Kauf-
mann, San Francisco (1998)

24. Wilson, S.W.: Classifiers that approximate functions. Journal of Natural Comput-
ing 1(2), 211–234 (2002)

Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS 115

A Problem Definitions

In this section, we introduce the problems used in the paper. For each one, a
short explanation of its characteristics and the sizes of the best action map %[B]
and the complete action map %[O] are provided.

A.1 Parity

The parity is a problem that has widely been used as a benchmark in LCS since
it was originally introduced in [12] to show the dependence of XCS’s performance
on the optimal population size. Given a binary string of length , the number
of ones modulo two determines the output. Thus, the problem does not permit
any generalization.

The best action map size consists of all the specific rules predicting the correct
class, that is, |[B]| = 2�. The complete action map doubles the best action map,
as it also maintains specific rules predicting the wrong class. Then |[O]| = 2�+1.

A.2 Decoder

The decoder problem is an artificial problem with binary inputs and multiple
classes. Given an input of length , the output is determined by the decimal
value of the binary input. The number of classes increases exponentially with the
condition length — numclasses = 2�. The best action map consists of all possible
binary inputs |[B]| = 2� with their corresponding decimal value as output. The
complete action map adds consistently incorrect rules per each consistently
correct rule of the best action map. Thus, |[O]| = 2� · (+ 1).

A.3 Position

Position is an imbalanced multiclass problem defined as follows. Given a binary-
input instance of length , the output is the position of the left-most one-valued
bit.

The best action map consists of + 1 rules with different levels of general-
ization. The complete action map needs to maitain a set of wrong-labeled rules.
The size of this set depends on the level of generalization of each class. Table 3
shows the best and the complete action map for position with = 6.

A.4 Multiplexer

The multiplexer problem is one of the most used benchmarks in accuracy-based
learning classifier systems [22]. The multiplexer is defined for binary strings of
size , where = k + 2k. The first k bits of the conditions are the position bits.
The output of the multiplexer is the value of the bit referred by the position
bits.

116 A. Orriols-Puig and E. Bernadó-Mansilla

Table 3. Best action map (first column) and complete action map (all columns) of
position with �=6

000000:0 1#####:0 #1####:0 ##1###:0 ###1##:0 ####1#:0 #####1:0

000001:1 1#####:1 #1####:1 ##1###:1 ###1##:1 ####1#:1 #####0:1

00001#:2 1#####:2 #1####:2 ##1###:2 ###1##:2 ####1#:2

0001##:3 1#####:3 #1####:3 ##1###:3 ###0##:3

001###:4 1#####:4 #1####:4 ##0###:4

01####:5 1#####:5 #0####:5

1#####:6 0#####:6

Imbalanced Multiplexer. The imbalanced multiplexer was introduced in [17]
to analyze the effects of undersampled classes in XCS. Departing from the orig-
inal multiplexer problem, the imbalanced multiplexer undersamples one of the
classes —labeled as the minority class— in the following way. When required,
a new input example is selected randomly. If the example belongs to the class
labeled as the majority class, it is given to the system. Otherwise, it is ac-
cepted with probability Paccept. If it is discarded, a new input example is chosen,
which undergoes the same process. Regarding the notation used in the paper,
Paccept = 1

2i .

Multiplexer with Alternating Noise. The multiplexer with alternating noise
was firstly used in [5] to show that XCS with tournament selection is able to
handle data sets with inconsistent data. The problem is as follows. When a new
input instance corresponding to the multiplexer problem is sampled, its action
is flipped with probability Px.

Analysis and Improvements of the Classifier
Error Estimate in XCSF

Daniele Loiacono1, Jan Drugowitsch2, Alwyn Barry2, and Pier Luca Lanzi1,3

1 Artificial Intelligence and Robotics Laboratory (AIRLab),
Politecnico di Milano. P.za L. da Vinci 32, I-20133, Milano, Italy

2 Department of Computer Science, University of Bath, UK
3 Illinois Genetic Algorithm Laboratory (IlliGAL),

University of Illinois at Urbana Champaign,
Urbana, IL 61801, USA

loiacono@elet.polimi.it, J.Drugowitsch@bath.ac.uk,

A.M.Barry@bath.ac.uk, lanzi@elet.polimi.it

Abstract. The estimation of the classifier error plays a key role in
accuracy-based learning classifier systems. In this paper we study the
current definition of the classifier error in XCSF and discuss the limi-
tations of the algorithm that is currently used to compute the classifier
error estimate from online experience. Subsequently, we introduce a new
definition for the classifier error and apply the Bayes Linear Analysis
framework to find a more accurate and reliable error estimate. This re-
sults in two incremental error estimate update algorithms that we com-
pare empirically to the performance of the currently applied approach.
Our results suggest that the new estimation algorithms can improve the
generalization capabilities of XCSF, especially when the action-set sub-
sumption operator is used.

1 Introduction

XCS with computed prediction, namely XCSF [12], is a major advance in the
field of learning classifier systems. It extends the typical idea of a classifier by
replacing the classifier prediction parameter with a prediction function p(st,w),
that is used to compute the classifier prediction based on the current state st

and a parameter vector w associated with each classifier. Since the introduction
of XCSF, several studies focused on the classifier weight vector update rule [7,6]
and on extending the form of the prediction function p (e.g. see [8]). However,
very little work (e.g. see [1]) has concentrated on the classifier error estimate in
XCSF, despite its important role in all accuracy-based learning classifier systems.
In XCSF the classifier error is usually computed in the same way as in XCS [11]:
it is defined as the estimate of the mean absolute prediction error and is up-
dated by the Widrow-Hoff rule (also known as Least Mean Squared algorithm).
In this paper we suggest the re-definition the classifier error as an estimate of the
root mean squared prediction error and propose application of the Bayes Linear
Analysis framework for computing the optimal classifier weight vector and the

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 117–135, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

118 D. Loiacono et al.

classifier error estimate simultaneously. Within such a framework we provide an
accurate and reliable estimate of the classifier error. At the same time, we can
also provide a better insight into the relationship between the expected error
and the statistical knowledge we have about the problem at hand. We prove
that the proposed approach, when applied to updating the classifiers in XCSF,
(i) computes exactly the same weight vector as the Least Squares update rule in-
troduced in [7], and (ii) provides an unbiased estimate of the root mean squared
prediction error. Additionally, by exploiting the similarities to Least Squares, we
also introduce a convenient recursive approach for updating the classifiers that
combines the Recursive Least Squares weights update [7] and the error track-
ing algorithm derived in [1]. Finally, we provide an empirical comparison of the
classifier error update rules presented in this paper. The experiments have been
performed by applying XCSF to the approximation of several commonly used
target functions [4]. Our experimental results suggest that the novel classifier
error update rules are able to find a more accurate and reliable estimate. In
particular, they may improve the generalization capabilities of the XCSF sys-
tem and allows for using the action-set subsumption operator while preventing
overgeneral solutions from taking over the evolved population.

2 The XCSF Classifier System

When compared to XCS, XCSF replaces the classifier scalar prediction
parameter by a prediction function p(φ(st),w) that is parameterised by a pa-
rameter vector w. This function computes the prediction as a function of the
feature vector φ(st), extracted from the current sensory input st, and the clas-
sifier parameter vector w that replaces the usual scalar prediction parame-
ter; to keep the notation uncluttered, for the rest of this paper we denote
φt ≡ φ(st) as the feature vector that corresponds to the sensory input st, and
p(φt) ≡ p(φt,w) as the classifier prediction for st. Usually, p(φt,w) is computed
by the linear combination p(φt,w) = wT φt, where the feature vector is given
by φT = [x0, st(1), . . . , st(n − 1)]T , x0 is a fixed parameter (that is, a constant
term), and n − 1 is the size of the sensory input vectors st, so that the feature
vectors φt are of size n. Even though it is possible to use non-linear functions to
compute the prediction in XCSF [5], in this paper we will exclusively consider
the just introduced linear function.

To update the classifiers, at each time step t, XCSF builds a match set [M]
containing the classifiers in the population [P] whose condition matches the
current sensory input st. For each action ai in [M], XCSF computes the system
prediction, as the fitness-weighted average of the predictions computed by all
classifiers in [M] that promote this action. Next, XCSF selects an action to
perform. The classifiers in [M] that advocate the selected action form the current
action set [A]; the selected action is sent to the environment and a reward rt

is returned to the system together with the next input. When XCSF is used as
a pure function approximator (like in [12] and in this paper), there is only one
dummy action which has no actual effect and the expected payoff is computed

Analysis and Improvements of the Classifier Error Estimate in XCSF 119

by Pt = rt. The expected payoff Pt is then used to update the weight vector w of
the classifiers in [A] using the Widrow-Hoff rule, also known as the modified delta
rule [10]. The weight vector, w, of each classifier in [A] is adjusted as follows:

w ← w +
ηφt

‖φt‖2

(
Pt − wT φt

)
, (1)

where η is the correction rate and ‖φt‖2 is the squared Euclidean norm of the
input vector φt [12]. Then the prediction error, ε, is updated by

ε ← ε + β
(
|wT φt − Pt| − ε

)
. (2)

Finally, the classifier fitness is updated as usual [11] and the discovery component
is applied as in XCS.

3 Squared Error or Absolute Error?

In XCSF the classifier weight vector is adjusted to minimise the mean squared
prediction error (MSE), while the classifier’s error is an estimate of the mean
absolute prediction error (MAE). Before discussing the consequences of this in-
consistency, let us firstly show that this claim is actually correct.

For the rest of this paper we will consider a single classifier and will assume
the sequence t = 1, 2, . . . to represent each time step in which this classifier
participates in the action set (making it equivalent to the classifier’s experience)
and thus will be updated.

3.1 Re-deriving the XCSF Weight Vector and Error Update

Let us assume that we have, after t classifier updates, the inputs {si}t
i=1 and

their associated payoffs {Pi}t
i=1, and that we want to estimate the classifier’s

weight vector w that minimises the MSE, given by

ft(w) =
1
t

t∑
i=1

(
wT φi − Pi

)2
, (3)

where we have again used φi ≡ φ(si). Applying the modified delta rule (also
known as the Normalised Least Mean Squared algorithm) to minimise ft(w)
results in the weight vector update equation

wt = wt−1 +
ηφt

‖φt‖2

(
Pt − wT

t−1φt

)
, (4)

which is equivalent to the Eq. 1 and thus confirms that the XCSF weight vector
update indeed aims at minimising the MSE ft(w).

To get the prediction error, on the other hand, let us assume that we want to
estimate the MAE, given by

εt =
1
t

t∑
i=1

∣∣wT φi − Pi

∣∣ . (5)

120 D. Loiacono et al.

This estimation problem can be reformulated as a least squares problem that
minimises

gMAE
t (w) =

1
t

t∑
i=1

(
εt −

∣∣wT φi − Pi

∣∣)2 (6)

with respect to εt. Solving ∂gMAE
t (w)/∂εt = 0 for εt results in Eq. 5, which

confirms that we can indeed estimate εt by minimising gMAE
t (w). Applying the

delta rule (also known as the Least Mean Squared algorithm) to minimising
gMAE

t (w) results in the prediction error update

εt = εt−1 + β
(
|wT

t φt − Pt| − εt−1
)
, (7)

where we have approximated the weight vector by its current estimate w ≈ wt.
This update equation is equivalent to Eq. 2, which shows that XCSF estimates
the mean absolute prediction error rather than the mean squared prediction
error.

Consequently, the performance component of XCSF that estimates the weight
vector aims at minimising the MSE, while the discovery component judges the
prediction quality of classifiers based on the MAE. This inconsistency is usually
not a serious issue because an optimal solution with respect to the MSE is also
nearly optimal with respect to the MAE. Moreover, the MAE is superior to the
MSE in terms of human readability; that is, while a threshold on the MAE of
the classifier prediction can be easily related to the expected accuracy of the
evolved approximation, a threshold on the MSE is not easily related to the final
approximation accuracy. Unfortunately, it is rather difficult to find estimators
that minimise the MAE (for an XCSF-related example see [8]), whilst there
are numerous techniques in the literature that provide accurate estimates that
minimise the MSE. This is a concern for XCSF, where the prediction error
estimate should reflect the actual prediction error. Thus, we propose replacing
the MAE estimate by the MSE estimate, as shown in the following section.

3.2 Estimating the Root Mean Squared Error

We can estimate the MSE (Eq. 3) in the same way as the MAE (Eq. 5) by
reformulating its estimation as a least squares problem that minimises

gMSE
t (w) =

1
t

t∑
i=1

(
ε2

t − (wT φi − Pi)2
)2

(8)

with respect to ε2
t , which denotes the estimate of the classifier squared error at

time t. Applying the delta rule by again approximating w by its estimate wt

gives the update equation

ε2
t = ε2

t−1 + β
(
(wT

t φt − Pt)2 − ε2
t−1

)
, (9)

from which we compute the classifier error by

εt =
√

ε2
t . (10)

Analysis and Improvements of the Classifier Error Estimate in XCSF 121

Thus, it is given by the estimated root mean squared error (RMSE) of the
prediction. We use the RMSE instead of the MSE because (i) the RMSE is a
standard error measure in the machine learning literature and (ii) the RMSE
has the same value range as the MAE that is usually used in XCSF.

Relying on the MSE instead of the MAE has the additional advantage that
we do not need to estimate it by the delta rule, as in Eq. 9, but can track the
solution to ft(w) directly, as we will show in the following section.

4 Improving the Error Estimate

In previous studies [6,1] the problem of computing the classifier prediction has
been presented as a problem of incremental parameter estimation. In the follow-
ing sections we show that both the optimal classifier weights and the estimate of
the classifier error can be computed by applying the Bayes Linear Analysis [3]
framework. Within this framework we are not only able to provide a very accu-
rate and reliable estimate of a classifier’s squared error but also give additional
insight into the relationship between the expected prediction error and the sta-
tistical properties of the target payoff and the feature vector. Furthermore, we
show how the proposed theoretical framework can be used in practice to extend
the classifier update in XCSF. Finally, we discuss how the proposed extension
is related to the least squares approach introduced in the literature for com-
puting the classifier weights [7] and for incrementally estimating the classifier
error [1].

4.1 The Bayes Linear Analysis

In XCSF, we need to predict, with the highest accuracy possible, the value of
the target payoff P on the basis of the observed features vector φ. Assuming a
full knowledge on the probability distribution of both P and φ we might derive
the conditional density p(P |φ) of P given φ and thus compute the classifier
prediction as the conditional expectation E[P |φ]. Unfortunately, we usually do
not have such knowledge and therefore cannot derive the conditional probability
distribution. In XCSF, however, we limit our search for a suitable prediction
model to the linear function wT φ (see Section 2). This assumption allows us
to apply Bayes Linear Analysis [3] to compute the classifier weights and errors.
Accordingly, the classifier weight vector w is considered optimal if it solves the
following minimisation problem,

min
w

E[(P − wT φ(s))2], (11)

which corresponds (see Appendix A for the derivation) to the classifier weight
vector w, defined as,

w = E
[
φφT

]−1
E [Pφ] . (12)

122 D. Loiacono et al.

By substituting w by Eq. 12 into the minimisation objective Eq. 11, we get
the following classifier squared prediction error estimate (see Appendix A for the
derivation):

ε2 = E
[
(P − wT φ)2

]
= E

[
P 2]− E

[
PφT

]
E
[
φφT

]−1
E [Pφ] . (13)

Before showing how Eqs. 12 and 13 can be used in practice to update the clas-
sifiers in XCSF, it is worthwhile to discuss in more details the consequences of
Eq. 13. First of all, given that in XCSF we have φT = [x0 sT], Eq. 13 can be
rewritten (see Appendix A for the derivation) as follows,

ε2 = cov(P, P)(1 − ρ2), (14)

where cov(P, P) = E
[
(P − E [P])2

]
and ρ2 is the squared correlation coefficient

between P and s, given by,

ρ2 =
cov(P, s)T cov(s, s)−1cov(P, s)

cov(P, P)
(15)

where we have
cov(P, s) = E [(P − E [P])(s − E [s])] ,
cov(s, s) = E

[
(s − E [s])(s − E [s])T

]
.

Equation 14 offers an interesting insight on the expected classifier prediction
error. When P and s are completely uncorrelated, i.e. ρ2 = 0, it is not possible
to provide any prediction of the target payoff better than its expected value;
therefore the expected square prediction error is equal to the variance of P . On
the other hand, when P and s are maximally correlated, i.e. ρ2 = 1, the target
payoff can be predicted without error; therefore the expected square prediction
error is equal to 0. In all the other cases, the higher the correlation between P
and s, the more accurate is the target payoff prediction and, therefore, the lower
is the expected square prediction error.

4.2 A Sample-Based Implementation and Its Relation to Least
Squares

So far we have assumed knowledge of E [PP], E [Pφ] and E [φφ]. Unfortunately
such knowledge is not available and thus we cannot directly use Eqs. 12 and 13
in XCSF. For this reason we propose to replace the true expectations with their
sample-based estimators, computed at each time step t as,

EPP ≈ ÊPP,t =
1
t

t∑
i=1

P 2
i = ÊPP,t−1 +

1
t
(P 2

t − ÊPP,t−1), (16)

Eφφ ≈ Êφφ,t
=

1
t

t∑
i=1

φiφ
T
i = Êφφ,t−1 +

1
t
(φtφ

T
t − Êφφ,t−1), (17)

EPφ ≈ ÊPφ,t =
1
t

t∑
i=1

Piφi = ÊPφ,t−1 +
1
t
(Piφt − ÊPφ,t−1). (18)

Analysis and Improvements of the Classifier Error Estimate in XCSF 123

Using the above approximations in Eqs. 12 and 13, we obtain the following
update rules that can be used for computing the classifier weights and error in
XCSF:

wt = Ê−1
φφ,t

ÊPφ,t, (19)

ε2
t = ÊPP,t − ÊT

Pφ,t
Ê−1

φφ,t
ÊT

Pφ,t
. (20)

Notice that the above update rules are more accurate than the usual
Widrow-Hoff rule (Eqs. 1 and 9) in finding the optimal classifier weights and
error estimates. On the downside, they are computationally more expensive: due
to the computation of matrix Ê−1

φφ
both update rules have a time complexity

of O(n3), whilst the Widrow-Hoff has a time complexity of O(n). Furthermore,
it is necessary to store, for each classifier, the sample-based estimators used in
Eqs. 19 and 20 with an additionally memory overhead of O(n2).

To reduce the time complexity of the above update equations it is useful to
note that, using the sample-based estimators introduced before, it can be shown
(see Appendix B) that Eq. 12 is equivalent to the Least Squares update rule
that was introduced in [7] for computing the classifier weights. Additionally, the
classifier error computed by Eq. 20 is equivalent to the sample-based estimator
of the mean square prediction error (see Appendix B), given by ft(w) in Eq. 3.
In the following section we show how this knowledge can be exploited to derive
more efficient update equations.

4.3 Recursive Least Squares and Error Tracking

We have shown that by applying Bayes Linear Analysis we can effectively com-
pute both the classifier weight vector and the classifier error. Unfortunately, as
already mentioned before, Eqs. 19 and 20 are computationally expensive. This
is a serious drawback because in XCSF the classifiers are updated incrementally
and frequently. However this is a well known limitation of the Least Squares
update, that is computed by Eq. 19. Thus, following the same procedure as
in [7], we can instead use the less costly Recursive Least Squares algorithms (see
Appendix C for more details) to incrementally update the classifier weights by

βRLS = 1 + φT
t Vt−1φt, (21)

Vt = Vt−1 − 1
βRLS Vt−1φ

T
t φtVt−1, (22)

wt = wt−1 + Vtφt(P − wT
t−1φt), (23)

where Vt is an estimate of the feature vector autocorrelation matrix. Note that
the above update equations avoid the computation of the inverse matrix at
each time and therefore have the lower computational complexity of O(n2). On
the other hand, each classifier still need to store the actual V matrix with an
additional memory overhead of O(n2).

124 D. Loiacono et al.

Table 1. Target functions used to compare the performance of XCSFrls, XCSFb and
XCSFrb (x ∈ [0, 1])

fp(x) = 1 + x + x2 + x3,

fabs(x) = |sin(2πx) + |cos(2πx)|| ,
fs3(x) = sin(2πx) + sin(4πx) + sin(6πx),

fs4(x) = sin(2πx) + sin(4πx) + sin(6πx) + sin(8πx).

Regarding the classifier error update, the solution to Eq. 3 can be tracked by
using the following recursive update (see [1] and Appendix D for more details):

ε2
t = ε2

t−1 +
1
t

(
(Pt − wT

t−1φt)(Pt − wT
t φt) − ε2

t−1
)
, (24)

where wt−1 and wt are respectively the classifier weight vectors before and after
the update. Note that Eq. 24 is as accurate as Eq. 13 in tracking the classifier’s
squared prediction error estimate, but has the same complexity as Eq. 9, that is
O(n) in time.

5 Experimental Design

All the experiments discussed in this paper aim at comparing the performance of
the different classifier error updates introduced in the previous sections. For this
purpose we use three different versions of XCSF: (i) XCS with RLS prediction,
briefly XCSFrls, that uses RLS (Eqs. 21, 22 and 23) to update classifier weights,
and the commonly applied Widrow-Hoff (Eq. 9) to update the classifier error
estimate; (ii) XCS with Bayes Linear prediction, briefly XCSFb that updates the
classifier weight and error estimate by Eqs. 19 and 20; (iii) XCS with recursive
Bayes Linear prediction, briefly XCSFrb, that applies the RLS algorithm (as
XCSFrls) to update the classifier weights, and uses Eq. 24 to track the classifier
error estimate. Note that in all the XCSF variants the classifier error is defined as
an estimate of the RMSE of the prediction, for the reasons discussed in Section 3.

The experimental analysis has been performed on several function approxi-
mation tasks, following the standard design used in the literature [12]. As target
functions we used the four functions reported in Table 1 that are a real valued
version of the ones used in [4].

In all the experiments performed in this work the feature vector is defined as
φ = [x0 x]T , with x0 set to 1. The performance is measured as the accuracy
of the evolved approximation f̂(x) with respect to the target function f(x),
evaluated, in each experiment, as the root mean square error (RMSE) given by

RMSE =

√√√√ 1
N

N∑
i=1

(f(xi) − f̂(xi))2,

where {x1, · · · , xN} are the N input samples used to evaluate the approximation
error. In practice we considered the average RMSE, dubbed RMSE, over all

Analysis and Improvements of the Classifier Error Estimate in XCSF 125

experimental runs. To measure the generalization capabilities we considered both
the number of macroclassifiers evolved and the fitness-weighted generality of the
evolved populations, where each classifier generality is computed as the expected
fraction of inputs matched according to [4].

Statistical Analysis. To analyze the results reported in this paper, we per-
formed an analysis of variance (ANOVA) [2] on the resulting performances,
evolved population size and generality. For each experiment and for each set-
ting, we analyzed the final performance, the number of macroclassifiers evolved,
and their fitness-weighted average generality for the different versions of XCSF;
we applied the analysis of variance to test whether there was some statistically
significant difference; in addition, we applied four post-hoc tests [2], Tukey HSD,
Scheffé, Bonferroni, and Student-Neumann-Keuls, to find which XCSF variants
performed significantly different.

6 Experimental Results

The experimental analysis is organized as follows. At first we study the different
update rules using a single classifiers for approximating a target function. Then
we compare XCSFrls, XCSFrb, and XCSFb on several function approximation
problems without using the action-set subsumption operator (Section 6.2) and
using it (Section 6.3).

6.1 Single Classifier Error

In the first experiment we compare the classifier error updates in XCSFrls,
XCSFb and in XCSFrb. For this purpose we focus on the error updates of a
single classifier approximating fabs for x ∈ [0.4, 0.6]. Figure 1 shows the classifier
error estimate of a single run of the same classifier, as computed by XCSFrls,
XCSFb, and XCSFrb when applied to fabs. As reference, we also report the
true error of the classifier, computed at the end of the experiment. Note that,
although all the three error estimates are about the same on the average, the
estimate computed by XCSFrls is very noisy and therefore not particularly reli-
able. On the other hand, both XCSFb and XCSFrb compute a very reliable and
accurate classifier error estimate. Also, the estimates of XCSFrb and XCSFb ini-
tially differ slightly due to the bias induced by the initialization of V in XCSFrb
(see Appendices C and D), but they converge very quickly to the same estimate.
In conclusion, notice that the reliability of the error estimate of XCSFrls might
be improved using a smaller value of the learing rate β; on the other hand,
the smaller β the slower the convergence of the error estimate toward the true
error. In all the experiments in the rest of the paper we always set β = 0.2
because tuning the value of β is tricky and the best value is, in general, problem
dependent.

126 D. Loiacono et al.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

er
 E

rr
or

 E
st

im
at

e

Number of Updates

XCSFrls
XCSFb

XCSFrb
True Final Error

Fig. 1. Comparison of the error updates of a single run of XCSFrls, XCSFb, and
XCSFrb applied to fabs. The reported error estimates are that of a single classifier that
matches all the inputs in the range [0.4, 0.6].

6.2 Analysis of Generalization

In the second set of experiments we apply XCSFrls, XCSFb, and XCSFrb to
all four functions in Table 1, using the following parameters setting: N = 400;
β = 0.2; α = 0.1; ν = 5; χ = 0.8, µ = 0.04, θdel = 25, θGA = 25, and δ = 0.1;
GA-subsumption is on with θGAsub = 25; action-set subsumption is not used;
m0 = 0.2, r0 = 0.1 [12]; in XCSFrls and XCSFrb we set δrls = 10000 [7]; the value
of ε0 is set to either 0.05, 0.1 or 0.2. Table 2 reports the performance of XCSFrls,
XCSFb, and XCSFrb, measured by the average RMSE of the evolved solutions

Table 2. Performance of XCSFrls, XCSFb, and XCSFrb applied to fp, fs3, fs4, and
fabs. The action-set subsumption is not used. Statistics are averages over 50 runs.

f(x) ε0 XCSFrls XCSFrb XCSFb

fp 0.05 0.0111 ± 0.0014 0.0173 ± 0.0024 0.0172 ± 0.0027
fp 0.10 0.0206 ± 0.0026 0.0289 ± 0.0032 0.0300 ± 0.0032
fp 0.20 0.0543 ± 0.0070 0.0869 ± 0.0125 0.0869 ± 0.0125
fs3 0.05 0.0300 ± 0.0083 0.0353 ± 0.0027 0.0347 ± 0.0025
fs3 0.10 0.0510 ± 0.0045 0.0633 ± 0.0043 0.0618 ± 0.0032
fs3 0.20 0.0831 ± 0.0075 0.1013 ± 0.0070 0.1024 ± 0.0080
fs4 0.05 0.0321 ± 0.0056 0.0406 ± 0.0066 0.0387 ± 0.0050
fs4 0.10 0.0547 ± 0.0048 0.0676 ± 0.0061 0.0669 ± 0.0041
fs4 0.20 0.0863 ± 0.0069 0.1105 ± 0.0070 0.1132 ± 0.0084
fabs 0.05 0.0190 ± 0.0020 0.0242 ± 0.0025 0.0243 ± 0.0026
fabs 0.10 0.0349 ± 0.0027 0.0482 ± 0.0034 0.0481 ± 0.0031
fabs 0.20 0.0867 ± 0.0048 0.1191 ± 0.0051 0.1208 ± 0.0052

Analysis and Improvements of the Classifier Error Estimate in XCSF 127

over 50 runs. The results show that all three XCSF versions are accurate in that
the final approximation error is lower than ε0. We can also see that the error
of XCSFrls is generally lower than the one of XCSFb and XCSFrb. This comes
hand in hand both with a larger evolved population and with a lower average
generality of the classifiers, as shown in Tables 3 and 4. These results are not
surprising as a more reliable classifier error estimate can be expected to improve
the classifier system’s generalization capabilities, as confirmed by the outcome
of this experiment.

The statistical analysis of the data reported in Tables 2, 3 and 4 reveals that
the differences between XCSFrb and XCSFb are always not significant with
a 99.9% confidence. A further analysis of Table 2 shows that the differences
between XCSFrls, XCSFrb, and XCSFb are significant with a 99.9% confidence
for almost all of the experiments, with the exception of cases where complex
function are to be estimated with a low error, which prohibits generalization (for
example, fs3 and fs4 with ε0 = 0.05). With respect to the population size (given
in Table 3) the statistical analysis indicates that the differences are not always
significant, especially on the most complex functions fs3 and fs4. Concerning
the fitness-weighted average generality, as reported in Table 4, the post-hoc
analysis shows that the differences between XCSFrb and XCSFb are always not
significant with a 99.9% confidence level, while the differences between XCSFb,
XCSFrb, and XCSFrls are always significant.

In summary, the results suggest that improving the accuracy and the reliabil-
ity of the classifier error estimate with the approaches introduced in Sections 4.2
and 4.3 allows XCSF to evolve more general and slightly more compact solu-
tions (even if the size of the populations evolved by XCSFb and XCSFrb are not
always significantly smaller than the ones evolved by XCSFrls).

Table 3. Average number of macroclassifiers evolved by XCSFrls, XCSFb, and XCSFrb
applied to fp, fs3, fs4, and fabs. The action-set subsumption is not used. Statistics are
averages over 50 runs.

f(x) ε0 XCSFrls XCSFrb XCSFb

fp 0.05 37.6200 ± 3.4922 33.0400 ± 3.6876 32.8200 ± 2.9509
fp 0.10 33.6000 ± 3.3226 29.5000 ± 2.9883 29.1400 ± 3.0200
fp 0.20 29.3600 ± 3.2970 27.0800 ± 3.2609 27.0800 ± 3.2609
fs3 0.05 52.7600 ± 4.3523 52.0400 ± 4.1807 51.3200 ± 4.7516
fs3 0.10 48.9400 ± 4.2020 45.9400 ± 4.1493 47.5800 ± 4.9883
fs3 0.20 45.2800 ± 3.6989 42.5000 ± 3.1953 42.8000 ± 3.0331
fs4 0.05 54.4200 ± 4.6047 52.8800 ± 4.4973 54.0000 ± 5.0794
fs4 0.10 52.5800 ± 4.7248 50.0800 ± 4.0686 50.0800 ± 4.8820
fs4 0.20 50.0400 ± 4.0594 47.1000 ± 3.6455 47.9200 ± 3.8773
fabs 0.05 45.3600 ± 3.9180 44.1000 ± 4.4419 42.9000 ± 4.0062
fabs 0.10 44.6800 ± 2.7162 41.6800 ± 3.8494 41.6800 ± 3.3849
fabs 0.20 40.7800 ± 3.9104 35.6400 ± 3.3031 35.8600 ± 3.5497

128 D. Loiacono et al.

Table 4. Average generality of classifiers evolved by XCSFrls, XCSFb, and XCSFrb
applied to fp, fs3, fs4, and fabs. The action-set subsumption is not used. Statistics are
averages over 50 runs.

f(x) ε0 XCSFrls XCSFrb XCSFb

fp 0.05 0.2916 ± 0.1462 0.3272 ± 0.1693 0.3265 ± 0.1719
fp 0.10 0.3389 ± 0.2106 0.3614 ± 0.2418 0.3649 ± 0.2430
fp 0.20 0.3951 ± 0.2928 0.4361 ± 0.3288 0.4361 ± 0.3288
fs3 0.05 0.0719 ± 0.0354 0.0819 ± 0.0405 0.0824 ± 0.0404
fs3 0.10 0.1032 ± 0.0452 0.1155 ± 0.0476 0.1145 ± 0.0478
fs3 0.20 0.1342 ± 0.0503 0.1454 ± 0.0570 0.1457 ± 0.0576
fs4 0.05 0.0556 ± 0.0294 0.0635 ± 0.0329 0.0634 ± 0.0329
fs4 0.10 0.0797 ± 0.0369 0.0892 ± 0.0387 0.0898 ± 0.0384
fs4 0.20 0.1039 ± 0.0430 0.1172 ± 0.0458 0.1170 ± 0.0449
fabs 0.05 0.1255 ± 0.0303 0.1340 ± 0.0363 0.1345 ± 0.0353
fabs 0.10 0.1498 ± 0.0520 0.1637 ± 0.0619 0.1635 ± 0.0622
fabs 0.20 0.2052 ± 0.1264 0.2480 ± 0.1445 0.2518 ± 0.1437

6.3 Classifier Error and Action-Set Subsumption

The action-set subsumption operator [11] is a powerful mechanism to improve the
generalization capabilities of XCS. In practice, action-set subsumption is rarely
used in XCSF [12,7]. In fact, the action-set subsumption relies heavily on the cor-
rectness of the classifier error estimate in order to identify accurate classifiers, and
in XCSF this can easily result in evolving overgeneral solutions. This is mainly due
to the noisy classifier error estimate computedbyXCSFas shown inFigure 1.Thus,

Table 5. Performance of XCSFrls, XCSFb, and XCSFrb applied to fp, fs3, fs4, and
fabs. The action-set subsumption is used with θASsub = 25. Statistics are averages over
50 runs.

f(x) ε0 XCSFrls XCSFrb XCSFb

fp 0.05 0.0655 ± 0.0080 0.0419 ± 0.0051 0.0429 ± 0.0049
fp 0.10 0.1799 ± 0.0078 0.0834 ± 0.0134 0.0816 ± 0.0129
fp 0.20 0.1863 ± 0.0001 0.1863 ± 0.0001 0.1862 ± 0.0001
fs3 0.05 0.0550 ± 0.0107 0.0461 ± 0.0170 0.0495 ± 0.0295
fs3 0.10 0.1027 ± 0.0230 0.0771 ± 0.0071 0.0794 ± 0.0092
fs3 0.20 0.2314 ± 0.0297 0.1451 ± 0.0112 0.1439 ± 0.0100
fs4 0.05 0.0609 ± 0.0221 0.0512 ± 0.0217 0.0470 ± 0.0109
fs4 0.10 0.1024 ± 0.0108 0.0801 ± 0.0090 0.0844 ± 0.0335
fs4 0.20 0.2246 ± 0.0277 0.1493 ± 0.0116 0.1482 ± 0.0120
fabs 0.05 0.0527 ± 0.0074 0.0361 ± 0.0060 0.0357 ± 0.0046
fabs 0.10 0.1343 ± 0.0235 0.0859 ± 0.0075 0.0825 ± 0.0076
fabs 0.20 0.2899 ± 0.0002 0.1725 ± 0.0279 0.1661 ± 0.0182

Analysis and Improvements of the Classifier Error Estimate in XCSF 129

Table 6. Average number of macroclassifiers evolved by XCSFrls, XCSFb, and XCSFrb
applied to fp, fs3, fs4, and fabs. The action-set subsumption is used θASsub = 25.
Statistics are averages over 50 runs.

f(x) ε0 XCSFrls XCSFrb XCSFb

fp 0.05 10.7800 ± 2.9277 7.8600 ± 2.5535 7.3800 ± 2.6449
fp 0.10 4.5200 ± 1.8027 7.8400 ± 3.7966 7.9000 ± 2.9682
fp 0.20 2.6000 ± 1.2329 2.1800 ± 1.0713 2.5200 ± 1.2528
fs3 0.05 27.6400 ± 3.5820 29.8600 ± 3.7041 30.4000 ± 3.8158
fs3 0.10 20.5200 ± 4.2391 20.5400 ± 3.5565 20.7800 ± 3.0678
fs3 0.20 16.2800 ± 3.7151 14.6800 ± 3.5068 13.3600 ± 3.0382
fs4 0.05 33.1000 ± 4.1049 38.1800 ± 3.4333 38.2800 ± 5.1109
fs4 0.10 25.9400 ± 4.0812 27.5200 ± 4.1916 27.1600 ± 3.9767
fs4 0.20 20.4000 ± 4.8497 17.7200 ± 2.9465 19.5200 ± 2.9205
fabs 0.05 16.4800 ± 3.3301 16.3400 ± 3.4328 16.5000 ± 2.7514
fabs 0.10 12.3600 ± 2.8549 15.5200 ± 4.4777 15.5800 ± 3.4761
fabs 0.20 2.6600 ± 1.3800 8.8800 ± 3.3205 10.0400 ± 3.9036

Table 7. Average generality of classifiers evolved by XCSFrls, XCSFb, and XCSFrb
applied to fp, fs3, fs4, and fabs. The action-set subsumption is used with θASsub = 25.
Statistics are averages over 50 runs.

f(x) ε0 XCSFrls XCSFrb XCSFb

fp 0.05 0.6833 ± 0.0820 0.5109 ± 0.0896 0.5149 ± 0.0846
fp 0.10 0.9861 ± 0.0739 0.7375 ± 0.0846 0.7301 ± 0.0847
fp 0.20 0.9960 ± 0.0635 0.9971 ± 0.0542 0.9961 ± 0.0619
fs3 0.05 0.0987 ± 0.0487 0.0842 ± 0.0403 0.0843 ± 0.0406
fs3 0.10 0.1437 ± 0.0619 0.1231 ± 0.0506 0.1216 ± 0.0517
fs3 0.20 0.2202 ± 0.1164 0.1732 ± 0.0650 0.1776 ± 0.0638
fs4 0.05 0.0759 ± 0.0398 0.0637 ± 0.0331 0.0638 ± 0.0335
fs4 0.10 0.1094 ± 0.0500 0.0927 ± 0.0413 0.0914 ± 0.0411
fs4 0.20 0.1631 ± 0.0845 0.1338 ± 0.0510 0.1331 ± 0.0517
fabs 0.05 0.1772 ± 0.0465 0.1506 ± 0.0339 0.1491 ± 0.0348
fabs 0.10 0.3034 ± 0.1619 0.2294 ± 0.1049 0.2258 ± 0.1021
fabs 0.20 0.9959 ± 0.0639 0.3469 ± 0.1839 0.3377 ± 0.1683

in the last set of experiments we test whether the new classifier error updates can
improve the performance of XCSF when action-set subsumption is used.

We again apply XCSFrls, XCSFb, and XCSFrb to the four functions in Ta-
ble 1, using the same parameters setting as in the previous experiment, except
for the action-set subsumption that is now active with θASsub = 25. The per-
formance of XCSFrls, XCSFb, and XCSFrb is reported in Table 5 computed as
the average RMSE of the evolved solutions over 50 runs. The results show that
XCSFb and XCSFrb are always able to evolve accurate solutions while the so-
lutions evolved by XCSFrls are never accurate except for the simplest function,

130 D. Loiacono et al.

fp, with the highest error threshold, ε0 = 0.2, that allows the evolution of a
completely general solution. As we expected, the results suggest that in XCSFrls
the action-set subsumption operator may have disruptive effects on the evolved
population by considering overgeneral classifiers to be accurate. On the other
hand, the more reliable error estimates used in XCSFrb and in XCSFb avoid
such a problem. The statistical analysis of the data reported in Table 5 reveals
that the differences between XCSFrb and XCSFb are always not significant with
a 99.9% confidence. A further analysis of Table 5 shows that the differences be-
tween XCSFrls and the variants XCSFrb and XCSFb are significant with a 99.9%
confidence for all the experiments except when the function is of low complexity
and generalization is straightforward (e.g. fp with ε0 = 0.2).

The analysis of the size and generality makes sense only if the the evolved pop-
ulation is accurate. For this reason we have only analyzed the results of XCSFrb
and XCSFb, as XCSFrls is almost never accurate. The statistical analysis of the
data reported in Table 6 shows that the differences between XCSFrb and XCSFb
are always not significant with a 99.9% confidence. On the other hand, the same
analysis applied to the data in Table 7 shows that XCSFrb evolves slightly more
general populations than XCSFb and this difference is significant for most of the
experiments. In addition, a comparison with the data reported in the previous
section (Tables 3 and 4), shows that by using the action-set subsumption oper-
ator it is possible to evolve a more compact and general population (differences
are always significant with a 99.9% confidence), confirming the results obtained
by applying the action-set subsumption to XCS [11].

In summary, the experimental results confirm our hypotheses: the classifier
error updates used in XCSFb and in XCSFrb offer a more reliable estimate and
therefore allow the action-set subsumption to perform as intended. In fact, the
populations evolved by XCSFb and XCSFrb are always accurate and they are
also significantly smaller and more general than the ones evolved without using
action-set subsumption.

7 Conclusions

In this paper we have proposed a new classifier error definition that is not only
more consistent with the XCSF performance component but can also be esti-
mated more effectively. For this purpose, we have introduced the Bayes Linear
Analysis framework to compute both the optimal classifier weight vector and
the classifier error. In particular, within this framework, we have provided an
insight into the relationship between the expected classifier error and the sta-
tistical properties of the problem variables, that is, the target payoff and the
input vector. Additionally, we have provided two update rules for updating the
classifier error more accurately. We have also discussed the similarities between
the proposed approach and the Least Squares one that was successfully applied
to extending XCSF in [7]. Finally, the classifier error update rules presented in
this paper have been empirically compared on several function approximation
tasks. Our results suggest that the new error updates do not only compute a more

Analysis and Improvements of the Classifier Error Estimate in XCSF 131

reliable and accurate estimate, but are also able to improve the performance and
the generalization capabilities of XCSF. In particular, the new error update rules
(i) allow XCSF to evolve a more compact and general population and (ii) prevent
XCSF from evolving inaccurate overgeneral approximations when the action-set
subsumption operator is used. On the other hand, improving the error estimate
with the usual Widrow-Hoff rule requires the tuning of the learning rate param-
eters and may significantly slow down the error estimate convergence. However,
it is still not clear whether a slower convergence may affect the performance in
more complex problems than the ones considered here.

In conclusion, it is important to say that the update rules introduced in this
paper have been derived assuming that all the past experiences collected by
the system are equally important for solving the problem. Unfortunately this
does not hold in multistep problems, where recent experience is usually more
important. Therefore, the approach introduced here needs to be extended for
multistep problems, possibly with some mechanism of recency-weighting of the
collected experience.

References

1. Drugowitsch, J., Barry, A.: A formal framework and extensions for function ap-
proximation in learning classifier systems. Machine Learning 70(1), 45–88 (2008)

2. Glantz, S.A., Slinker, B.K.: Primer of Applied Regression & Analysis of Variance,
2nd edn. McGraw Hill, New York (2001)

3. Goldstein, M.: Bayes linear analysis. In: Kotz, S., Read, C.B., Banks, D.L. (eds.)
Encyclopedia of Statistical Sciences, vol. 3, pp. 29–34. Wiley, New York (1999)

4. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Extending XCSF beyond
linear approximation. In: Genetic and Evolutionary Computation – GECCO-2005.
ACM Press, Washington (2005)

5. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: XCS with Computed
Prediction for the Learning of Boolean Functions. In: Proceedings of the IEEE
Congress on Evolutionary Computation – CEC-2005, Edinburgh, UK. IEEE Com-
puter Society Press, Los Alamitos (2005)

6. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Prediction update al-
gorithms for XCSF: RLS, kalman filter, and gain adaptation. In: GECCO 2006:
Proceedings of the 8th annual conference on Genetic and evolutionary computa-
tion, pp. 1505–1512. ACM Press, New York (2006)

7. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Generalization in the
XCSF classifier system: Analysis, improvement, and extension. Evolutionary Com-
putation 15(2), 133–168 (2007)

8. Loiacono, D., Marelli, A., Lanzi, P.L.: Support vector regression for classifier pre-
diction. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pp. 1806–1813. ACM Press, New York (2007)

9. Weisstein, E.W.: Sherman-morrison formula. From MathWorld–A Wolfram Web
Resource, http://mathworld.wolfram.com/Sherman-MorrisonFormula.html

10. Widrow, B., Hoff, M.E.: Neurocomputing: Foundation of Research. In: Adaptive
Switching Circuits, pp. 126–134. MIT Press, Cambridge (1988)

http://mathworld.wolfram.com/Sherman-MorrisonFormula.html

132 D. Loiacono et al.

11. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computa-
tion 3(2), 149–175 (1995)

12. Wilson, S.W.: Classifiers that approximate functions. Journal of Natural Comput-
ing 1(2-3), 211–234 (2002)

A Linear Bayes Analysis

Linear Bayes Analysis defines the optimal classifier weight vector w as the one
that minimises the objective function

J = E
[
(P − wT φ)(P − wT φ)T

]
= E

[
P 2]− E

[
PφT

]
w − wT E [Pφ] + wT E

[
φφT

]
w. (25)

Solving ∂J/∂w = 0 for w results in

w = E
[
φφT

]−1
E [Pφ] . (26)

The classifier’s squared error estimate can be computed by substituting Eq. 26
into Eq. 25, resulting in

ε2 = E
[
P 2]− E

[
PφT

]
E
[
φφT

]−1
E [Pφ] −

(
E
[
φφT

]−1
E [Pφ]

)T

E [Pφ] +

+
(

E
[
φφT

]−1
E [Pφ]

)T

E
[
φφT

]
E
[
φφT

]−1
E [Pφ] =

= E
[
P 2]− E

[
PφT

]
E
[
φφT

]−1
E [Pφ] (27)

Given that in XCSF we have φT = [x0 sT], and decomposing the weight
vector into wT = [w0 w ′T], we can rewrite ∂J/∂w = 0 as the following coupled
equations

E
[
w0x

2
0 + w′sT

]
= E [P] , (28)

E
[
w0x0s + w ′ssT

]
= E [P s] , (29)

that, when solved for w0 and w′, result in,

w =
[

w0
w′

]
=
[
x−1

0 (E [P] − cov(P, s)cov(s, s)−1E
[
sT
]
)

cov(P, s)cov(s, s)−1

]
, (30)

where we have
cov(P, s) = E [(P − E [P])(s − E [s])] ,
cov(s, s) = E

[
(s − E [s])(s − E [s])T

]
.

By substituting the above classifier weight vector definition into Eq. 25, we can
rewrite the classifier squared error as follows:

ε2 = cov(P, P) − cov(P, s)T cov(s, s)−1cov(P, s), (31)

where cov(P, P) = E
[
(P − E [P])2

]
.

Analysis and Improvements of the Classifier Error Estimate in XCSF 133

B Bayes Linear Analysis and Least Squares

Let Φt and Πt denote respectively the feature and payoff matrix, after t updates,
and given by

Φt =

⎡⎢⎣φT
1
...

φT
t

⎤⎥⎦ , Πt =

⎡⎢⎣P1
...

Pt

⎤⎥⎦ . (32)

The Least Squares algorithm find the weight vector wt that minimises the square
error

∑t
i=i(Pi − wT

t φi)2, by solving the normal equation

ΦT
t Φtwt = ΦT

t Πt. (33)

By definition, we have

ΦT
t Φt =

t∑
i=1

φiφ
T , (34)

ΦT
t Π =

t∑
i=1

Piφi. (35)

Multiplying the left and the right hand of Eq. 33 by 1/t gives together with
Eqs. 34 and 34,

1
t

t∑
i=1

φiφ
Twt =

1
t

t∑
i=1

Piφi, (36)

which, according to the definition introduced by Eqs. 16, 17, and 18, can be
written as

Êφφ,twt = ÊPφ,t, (37)

which results in the classifier weight vector update,

wt = Ê−1
φφ,t

ÊPφ,t. (38)

The squared prediction error (minimised by the above equation) is defined by

ε2
t =

1
t

t∑
i=1

(
Pi − wt

T φi

)2
, (39)

and can be expanded to

ε2
t =

1
t

t∑
i=1

P 2
i + wt

T

(
1
t

t∑
i=1

φiφ
T
i

)
wt − wt

T

(
2
t

t∑
i=1

φi

)
, (40)

which, together with Eqs. 16, 17,18, and 38, gives

ε2
t = ÊPP,t − ÊT

Pφ,t
Ê−1

φφ,t
ÊT

Pφ,t
. (41)

134 D. Loiacono et al.

C Recursive Least Squares

The Recursive Least Squares (RLS) algorithm allows tracking the weight vector
wt that minimises the convex cost function

t∑
t=1

(
wT

t φt − Pt

)2
+

1
δRLS ‖wt‖2, (42)

and satisfies the equality(
ΦT

t Φt +
1

δRLS I
)

wt = ΦT
t Pt, (43)

where I denotes the identity matrix and δRLS is a large positive constant. Let
V−1

t = ΦTΦt denote the feature autocorrelation matrix estimate, that satisfies
the relation

V−1
t = V−1

t−1 + φT
t φt, (44)

with V0 = δRLSI. Similarly, we have

ΦT
t Pt = ΦT

t−1Pt−1 + φtPt, (45)

which, together with Eqs. 43 and 44 allows us to derive

V−1
t wt = V−1

t wt−1 + φt(Pt − wT
t−1φt). (46)

Pre-multiplying the above by Vt results in the RLS weight vector update

wt = wt−1 + Vtφt(Pt − wT
t−1φt). (47)

To get the update for V, we apply the Sherman-Morrison formula [9] to Eq. 44,
resulting in

Vt = Vt−1 − Vt−1φtφ
T
t Vt−1

1 + φT
t Vt−1φ

, (48)

which can be written as

βRLS = 1 + φT
t Vt−1φt, (49)

Vt = Vt−1 − 1
βRLS Vt−1φtφ

T
t Vt−1, (50)

and thus results in the final RLS update for V. Note that the Sherman-Morrison
formula is only applicable if V−1 is invertible, and thus V needs to be initialised
to V0 = δRLSI with δRLS < ∞, such that V−1

0 = (1/δRLS)I > 0I. This intro-
duces a bias that is kept small by setting δRLS to a large value.

Analysis and Improvements of the Classifier Error Estimate in XCSF 135

D Tracking Mean Square Error

Let us assume that the weight vector w is estimated by the RLS algorithm,
initialised with a very large δRLS → ∞, and therefore by Eq. 43 at t satisfies the
normal equation (

ΦT
t Φt

)
wt = ΦT

t Pt, (51)

which can also be written as

wT
t ΦT

t (Φtwt − Pt) = 0. (52)

Our aim is to find an incremental update equation for the MSE, ft(Wt), that,
following Eq. 3, is in matrix notation given by

tft(wt) = ‖Φtwt − Pt‖2, (53)

Using −Pt = −Φtwt + (Φtwt − Pt) and Eq. 52, we can derive

PT
t Pt = wT

t ΦT
t Φtwt − 2wT

t ΦT
t (Φtwt − Pt) + (Φtwt − Pt)T (Φtwt − Pt)

= wT
t ΦT

t Φtwt + ‖Φtwt − Pt‖2, (54)

and thus we can express the sum of squared errors by

‖Φtwt − Pt‖2 = PT
t Pt − wT

t ΦT
t Φtwt. (55)

To express ‖Φtwt −Pt‖2 in terms of ‖Φt−1wt−1 −Pt−1‖2, we combine Eqs. 44,
45 and 55, and use V−1

t wt = ΦT
t Pt after Eq. 51 to get

‖Φtwt − Pt‖2

= PT
t Pt − wT

t ΦT
t Φtwt

= ‖Φt−1wt−1 − Pt−1‖2 + P 2
t + wT

t−1V
−1
t−1wt−1 − wT

t V−1
t wt

= ‖Φt−1wt−1 − Pt−1‖2 + P 2
t

+wT
t−1

((
V−1

t−1 + φtφ
T
t

)
wt − φtPt

)
− wT

t

(
V−1

t−1wt−1 + φtPt

)
= ‖Φt−1wt−1 − Pt−1‖2 + P 2

t + wT
t−1φtφ

T
t wt − wT

t−1φtPt − wT
t φtPt

= ‖Φt−1wt−1 − Pt−1‖2 + (wT
t−1φt − Pt)(wT

t φt − Pt).

Thus, we get

tft(wt) = (t − 1)ft−1(wt−1) + (wT
t−1φt − Pt)(wT

t φt − Pt), (56)

which, using ε2
t ≡ ft(wt), can be rewritten to

ε2
t = ε2

t−1 +
1
t

(
(wT

t−1φt − Pt)(wT
t φt − Pt) − ε2

t−1
)
. (57)

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 136–153, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Learning Classifier System with
Mutual-Information-Based Fitness

Robert Elliott Smith and Max Kun Jiang

Department of Computer Science
University College London
London, United Kingdom

robert.elliott.smith@gmail.com,
m.jiang@cs.ucl.ac.uk

Abstract. This paper introduces a new variety of learning classifier system
(LCS), called MILCS, which utilizes mutual information as fitness feedback.
Unlike most LCSs, MILCS is specifically designed for supervised learning. We
present preliminary results, and contrast them to results from XCS. We discuss
the explanatory power of the resulting rule sets and introduce a new technique
for visualizing explanatory power. Final comments include future directions of
this research, including investigations in neural networks and other systems.

Keywords: Evolutionary computation, learning classifier systems, machine
learning, information theory, mutual information, supervised learning, protein
structure prediction, explanatory power.

1 Introduction

This paper presents a new form of learning classifier system (LCS) 68 that uses mu-
tual information 1213 as its primary fitness feedback, in supervised learning settings.
This system is called the mutual information learning classifier system (MILCS, pro-
nounced “my LCS”). In addition to drawing on current LCS research and information
theoretic concerns, the system draws on an analogy to cascade correlation neural net-
works (CCNs) 5 in its design.

The following sections describe these inspirations and the general design of
MILCS. Afterwards, we discuss preliminary results, with comparison to XCS. In
this comparison, we are concerned not only with accuracy, generalization, and re-
quired computational time, but also with explanatory power of the resulting rule
sets. Since explanatory power (in essence, the human understandability of machine-
learned concepts) is an abstract concept, we introduce a new technique for visualiz-
ing results.

The preliminary results presented are promising, and in final comments we discuss
future directions for this research. This clearly includes further research into MILCS
performance, but also includes extension of the ideas involved to neural networks,
and possibly other systems.

 A Learning Classifier System with Mutual-Information-Based Fitness 137

2 LCSs and CCNs: An Analogy

To introduce the ideas in MILCS, it is first useful to consider the similarities and dif-
ferences between LCSs and CCNs. This is done in several stages in the following
subsections.

2.1 Parameter Versus Structural Learning

In general, machine learning approaches can be broken into two components: the
learning of continuous-valued parameters of a solution representation, and the learn-
ing of discrete connections between elements of the solution representation. The
terms “parameter” and “structural” learning are borrowed from the Bayesian Network
community 7, where the former is the learning of probabilities of events, conditioned
on one another (the probabilities that reside within Bayesian Network nodes) and the
latter is the learning of which events are conditioned on which (the links in the Bayes-
ian Network). It is generally acknowledged that the latter is more difficult than the
former. Also, the latter has a profound effect on the computational complexity of
the former: the number of probabilities one must learn goes up exponentially with the
number of links. Moreover, structural learning is also associated with generalization,
parsimony, and explanatory power: fewer discrete connections make for a more un-
derstandable representation of a solution.

2.2 CCN and Structural Learning

It is also interesting to note that neural networks do not, in general, employ sophisti-
cated techniques for structural learning. There are many notable exceptions, amongst
them the techniques employed in CCNs.

A rough outline of the CCN procedure is as follows:

1. Begin with a single layer neural network. Repeat until a measure of conver-
gence is achieved:

a. Train existing output layer connection weights (parameter learning)
to reduce error on training data (supervised learning)

b. Insert a new hidden layer node, with inputs from all existing inputs
and hidden layer nodes in the network (cascaded). Note that the
output of this node is not yet connected to the output layer nodes of
the network.

c. Train the input weights of this new node to maximize the absolute
correlation of the node’s output to the error of the existing net-
work’s output on the training cases (supervised learning).

d. Connect the output of the new node to all output layer nodes.

At first, this may not seem to meet the discrete-optimization criteria for structural
learning discussed above. However, note that input layer node weights are often ad-
justed to values near zero in step c above. In effect, this “turns off” the connection be-
tween a hidden layer node and a particular input (or another hidden layer node).
Moreover, there are variations of CCN that employ a population of randomly-
initialized nodes in step b and c, culling this population to one node in step d. If these

138 R.E. Smith and M.K. Jiang

nodes are initialized with less-than-full input connectivity, the discrete optimization of
structural learning is clear.

CCN is relatively straightforward algorithm, with the exception of the somewhat
mysterious element of step c. One must consider why one would maximize the abso-
lute correlation between a node’s output and existing network error. Upon considera-
tion, it becomes clear that this step will allow one to cancel out that existing error with
the new node, through the weight adjustments in step a.

2.3 CCN and XCS

XCS, perhaps the most popular LCS paradigm, has a notable similarity to CCN. One
of XCS’s innovations is its use of accuracy, a second order statistic, as fitness. Simi-
larly, CCN attempts to maximize absolute correlation, another second order statistic,
in its creation of hidden layer nodes. If one imagines an analogy where XCS rules are
like hidden layer nodes 14, there is a clear correspondence.

However, it is not an exact correspondence, leading one to ask why a difference
exists. Note that in CCN, correlation to existing error is justified by supervised learn-
ing training of the output layer weights, to cancel out that error. No such “cancella-
tion” exists in XCS, since a rule’s “output” (action) is not tuned via supervised learn-
ing although extensions of XCS, named XCSF 11 and UCS 2 do train their outputs to
reduce errors.

2.4 Supervised Versus Reinforcement Learning

XCS grows out of the LCS tradition of reinforcement learning 15. Reinforcement
learning is defined by the lack of supervisory feedback that indicates the correct ac-
tion the system should take. Instead, only “reward” or “punishment” type feedback is
available. Since XCS grew from reinforcement learning, it generally does not employ
supervised update of actions. Instead, actions are searched for via the GA, or various
covering operations.

However, XCS has been applied to many supervised learning problems. In super-
vised learning problems direct feedback is available that indicates the correct actions
for the system (often via solved training cases). CCN exploits this supervision in its
update of output layer weights, which justifies its use of correlation to existing error
in hidden layer weights.

This suggests the analogy upon which MILCS is built. However, rather than em-
ploying correlation, we have employed mutual information (yet another second order
statistic). We feel this provides an additional theoretical backing for the system,
which is discussed below.

3 The Role of Mutual Information in MILCS

Shannon’s fundamental work in information theory 1213 addresses the following
concern: given an input signal to a communication channel, how does one maximize
the rate of communication, while minimizing error in that communication? This is
closely related to Shannon’s work on data compression, which considers the maxi-
mum compression ratio for lossless representation of data.

 A Learning Classifier System with Mutual-Information-Based Fitness 139

Shannon showed that the zero-error maximum communication rate for a channel is
given by maximizing the mutual information between the channel’s input and output.
Maximization of mutual information is accomplished by manipulation of the prob-
abilities of various inputs to the channel, or through the manipulation of the coding of
input signals. Since coding is similar to compression, the analogy to lossless compres-
sion is clear.

Imagine that the existing error in step c of the CCN procedure is an input signal to
a communication channel. In this case, the hidden layer node plays the role of an en-
coder for signal. Therefore, we find a firm theoretical foundation for using the mutual
information as the fitness of this node, through Shannon’s theorems.

Another useful analogy is to sensor placement. Imagine that one is set the task of
placing temperature sensors in a large space, with the goal of delivering maximum in-
formation about the temperature distribution in that space. If one can estimate the
probability distribution of temperatures over the space, and one knows the response
field of the sensors, one can maximize mutual information between these distributions
to optimally place the sensors. This is similar to the placement of the conditions of
classifiers (or the receptive fields of neurons).

Mutual information between variables X and Y is given by:

()

()

(,)
; (,) log

() ()

(|)
(|) log

()

y Y x X

y Y x X

p x y
I X Y p x y

p x p y

p x y
p x y p y

p x

∈ ∈

∈ ∈

=

=

∑∑

∑∑
 (1)

It is useful to examine the terms of this expression. Consider x to be the event of an
error, and y to be the event of a particular rule matching. Thus, ()p x is the distribu-

tion of existing error of a system, and ()p y is the distribution of responses (match-

ing or not matching) of a rule. In this case, the first term, (|)p x y , can be seen as

the relevance of the rule’s output to existing error. The second term, ()p y , is the

generality of the rule. The third term, ()log (|) ()p x y p x , is a comparison of the

error when the rule matches to the overall error in the space. This is a sort of specific-
ity term. Thus, the mutual information expression offers a balance of accuracy, gener-
ality, and specificity, in an optimal fashion dictated by Shannon’s Theorems.

4 The MILCS Process

Given the above considerations, MILCS operates as follows. Note that to conform to
the CCN analogy, and articulate all the terms in the sums of equation 1.1, we have
given each rule two actions: one for when the rule matches, and one for when the rule
does not match. Both are updated via simple supervised learning:

140 R.E. Smith and M.K. Jiang

Table 1. Properties of MILCS classifier

Properties Explanation Initial value
act Action when matched Randomly se-

lected
actNotMatched Action when not matched Randomly se-

lected
pre Prediction value when matched 10.0
preNotMatched Prediction value when it is not matched 10.0
fit Fitness value 0.01
noOfTrainingCases Number of training cases exposed to 0
exp Number of times in the action set 0
gaIterationTime The iteration time when last participated in the

GA
0

num Number of the same classifier 1
MI[][] Mutual Information counters for modelling an

empirical probability distribution over the
matched/not-matched condition of the removed
rule, and the error of the remaining rules. Fit-
ness is calculated from this bivariate probability
distribution

0 (2x2 array)

Table 2. MILCS parameters

Parameters Explanation
MAX_POP_SIZE Maximum pop size
THETA_GA Threshold for running GA to generate new classifiers.

Once the average gaIterationTime of all classifiers in
the action set is >= THETA_GA, the GA is triggered

INIT_POP_SIZE Initial Pop Size
MATURITY_ACT_SELECT noOfTrainingCases required to participate in action

selection
MATURITY_SUB noOfTrainingCases required to participate in sub-

sumption
THETA_SUB If a classifier’s exp is > THETA_SUB, it can be a

subsumer
MATURITY_DEL noOfTrainingCases required for a classifier to be de-

leted
DEL_WINDOW_SIZE Window size for deletion. Number of iterations the

system should look back in the history
THETA_PERFORMANCE If the system performance accuracy reaches this

threshold, and the population size is larger than the
maximum size, group deletion is triggered next time

DONT_CARE_PROB The probability for having #s in the newly generated
classifiers

WIN_FREQ A deletion threshold: if a classifier’s winningFrequency
falls below this value, it can be deleted. If the system
performance is above THETA_PERFORMANCE, a
group of classifiers which fall below this value are de-
leted

WIN_FREQ_INC If group deletion is triggered, WIN_FREQ is incre-
mented by this value

MAX_WIN_FREQ Maximum value of the WIN_FREQ

 A Learning Classifier System with Mutual-Information-Based Fitness 141

Table 3. MILCS entities and main methods

Syntax Explanation
pop Population set. Population of classifiers
mset Match set. A sub-set of pop which contains

classifiers that match the given training case
nmset Not matched set. A sub-set of pop which

contains classifiers that do not match the
given training case

aset Action set. A sub-set of mset or nmset
which contains classifiers that has the same
actions

action act = actionSelection (classifierSet set) Select action based on pre and preNot-
Matched of the classifiers of the argument
set. Only classifiers with noOfTraining-
Cases > MATURITY_ACT_SELECT are
taken into account

classifierSet newSet = createSet (classifierSet
set, trainingCase t)

Create match set or not matched based on
the given trainingCase t

classifierSet newSet = createActionSet (classi-
fierSet set, action act)

Create action set based on the selected action

updateMI (classifier i, reward r, trainingCase t) Update the MI counters of classifier i based
on its reward and whether it matches the
trainingCase t or not

updateWinningFequency (classifier i) Update the winningFrequency of classifier i
if i.noOfTrainingCases >=
MATURITY_ACT_SELECT +
MATURITY_ DEL

updateActions (classifier i, reward r) Adjust the act and actNotMatched of classi-
fier i based on its reward r and its previous
actions

updateFitness (classifier i) Update the i.fit based on i.MI
moreGeneral (classifier i, classifier j) Returns true if each bit of the condition of

classifier i is either the same as that bit of
the condition of classifier j, or a don’t care
symbol #

subsumes (classifier i, classifier j) If classifier i subsumes classifier j then j is
removed and i.num is incremented

doGA (classifierSet set1, THETA_GA, classi-
fierSet set2)

If the average of classifier i.gaIterationTime
of classifier set1 >= THETA_GA, run a
non-panmicitic GA on set1 and two children
classifiers are added to classifierSet set2

resetMI (classifierSet set) Reset the MI array to 0s for all classifiers of
set

142 R.E. Smith and M.K. Jiang

Pseudo code of the MILCS process:

initialize(pop, INIT_POP_SIZE)
for each random trainingCase t:
 for each classifier i from pop
 removeClassifier(i,pop)
 action act = actionSelection(pop)
 reward r = getReward(act,t)
 updateMI(i, r, t)

addClassifier(i,pop)
 classifierSet mset = createSet(pop,t)
 classifierSet nmset = createSet(pop,t)
 act = actionSelection(pop)
 r = getReward(act, t)
 for each classifier i from pop
 updateWinningFrequency(i)
 if act is from mset
 classifierSet aset = createActionSet(mset, act)
 else
 classifierSet aset = createActionSet(nmset, act)
 for each classifier i from aset
 updateFitness(i)
 i.exp ++
 for each rule j from the aset

if i.noOfTrainingCases > MATURITY_SUB && j.noOfTrainingCases >
MATURITY_SUB && i.act == j.actNotMatched && i.exp > THETA_SUB
&& moreGeneral(i,j) && i.pre => j.pre && i.pre > j.preNotMatched &&
i.preNotMatched => j.preNotMatched && .PreNotMatched > j.pre

 subsumes(i,j)
 doGA(aset, THETA_GA, pop)
 if pop.size > MAX_POP_SIZE
 if pop.previousPerformance > THETA_PERFORMANCE
 for each rule i from pop

 if i.noOfTrainingCases >= MATURITY_ACT_SELECT +
 THETA_DEL && i.winningFrequency < WIN_FREQ

 removeClassifier(i, pop)
 if WIN_FREQ < MAX_WIN_FREQ
 WIN_FREQ += WIN_FREQ_INC
 else
 for each rule i from pop
 if isMin(i.winningFrequency, pop)
 removeClassifier(i,pop)
 resetMI(aset)
 for each classifier i from pop
 updateWinningFrequency(i)
 updateActions(i, r)

 A Learning Classifier System with Mutual-Information-Based Fitness 143

Note that the removing and adding procedures (second for loop) are there to
conform of the CCN analogy that the new hidden layer node is not yet fully connected
to the network thus the new rule’s future parent should not have any effect on the
system.

5 Results

We have tested MILCS on the multiplexer problem and on the coordination number
(CN) protein structure prediction problem.

5.1 Multiplexer Problems

We have evaluated results on the 6, 11, and 20 multiplexer problems. In order to show
a thorough comparison, we present these results, along with results obtained from
XCS (using 4). Three lines appear on each plot: the percentage correct over the past
50 training cases (solid line), the difference between reward and predicted reward
over the past 50 training cases (dashed line), and the number of macro-classifiers
(unique classifiers) in the population (dash-dotted line) divided by 1000. Graphs re-
flect the average of 10 runs.

For XCS, we employ the parameter settings reported in 17. MILCS parameter set-
tings are shown in Table 4.

Table 4. MILCS parameters for the multiplexer problems

Multiplexer problem size 6 11 20
MAX_POP_SIZE 600 1500 2000
THETA_GA 25 25 25
DONT_CARE_PROB 0.33 0.33 0.33
INIT_POP_SIZE 500 500 500
MATURITY_ACT_SELECT 32 128 1024
MATURITY_SUB 64 256 2048
THETA_SUB 70 70 70
MATURITY_DEL 32 128 1024
DEL_WINDOW_SIZE 128 2048 5012
WIN_FREQ 0.0156 0.0005 0.00039
WIN_FREQ_INC 0.00001 0.00001 0.00003
MAX_WIN_FREQ 0.02 0.02 0.02

Figure 1 and Figure 2 show results from XCS and MILCS applied to the 6 multi-

plexer. Note that MILCS converges more rapidly, and to a smaller final population of
unique classifiers.

Figure 3 and Figure 4 show results from XCS and MILCS applied to the 11 multi-
plexer. While convergence times are similar, MILCS still converges to a smaller final
population of unique classifiers.

144 R.E. Smith and M.K. Jiang

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

Explore Problems (1000s)

P
er

fo
rm

an
ce

, E
rr

or
, P

o
p
 s

iz
e

(1
0

ru
n
s)

Fig. 1. Results from XCS applied to the 6 multiplexer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

Explore Problems (1000s)

P
er

fo
rm

an
ce

,
E

rr
o
r,

 P
o
p
 s

iz
e

(1
0

ru
n
s)

Fig. 2. Results from MILCS on the 6 multiplexer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

Explore problems (1000s)

P
er

fo
rm

an
ce

, E
rr

or
, P

o
p

si
ze

 (
10

 r
un

s)

Fig. 3. Results from XCS on the 11 multiplexer

Figure 5 and Figure 6 show results from XCS and MILCS applied to the 20 multi-
plexer. In this case, both convergence times and final population of unique classifiers
are similar.

 A Learning Classifier System with Mutual-Information-Based Fitness 145

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

Explore Problems (1000s)

P
er

fo
rm

an
ce

,
E

rr
o
r,

 P
o
p
 s

iz
e

(1
0

ru
n
s)

Fig. 4. Results from MILCS on the 11 multiplexer

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70 80 90 100

Explore Problems (1000s)

P
er

fo
rm

an
ce

,
E

rr
o
r,

 P
o
p
 s

iz
e

(1
0

ru
n
s)

Fig. 5. Results from XCS on the 20 multiplexer

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90 100

Explore Problems (1000s)

P
er

fo
rm

an
ce

,
E

rr
o
r,

 P
o
p
 s

iz
e

(1
0

ru
n
s)

Fig. 6. Results from MILCS on the 20 multiplexer

However, we note that with XCS and MILCS, we ran complete tests on all possible

inputs for each of the multiplexer problems. Each system passed this “full test” in
each situation, with the exception of XCS applied to the 20 multiplexer, which failed
on a small number of cases at the end of some runs portrayed in the average of 10
shown in Figure 5. While we did not overcome this difficulty with the code provided

146 R.E. Smith and M.K. Jiang

in 4, we were able to reproduce perfect behavior in approximately 75,000 explore
problems using 10. This is consistent with the results on XCS scaling for the multi-
plexer problems provided in 19.

6 Scalability

Our results reveal MILCS scaling up slightly worse than XCS (see Figure 7)

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Log(Size)

L
o
g
(E

va
ls

)

XCS

MILCS

Fig. 7. Log-log plot of polynomial scaling of MILCS and XCS on the multiplexer problems

However, both are scaling as low-order polynomials. While there is an apparent

difference in the scalability between the algorithms, it is not of significant order.
Moreover, the previous results indicate that MILCS is ending with a substantially
smaller set of unique classifiers. Hand examination of rule sets has revealed that al-
most all of the mature rules at the end of our MILCS runs are best-possible-
generalized rules for the multiplexers. However, this examination relies on our
knowledge of the underlying problem. In the following section, we introduce a
method of visualizing the comparative explanatory power of the final rule sets.

7 Explanatory Power

While accuracy and compute time are important metrics for machine learning sys-
tems, it is also important to consider their explanatory power. While this term has no
formal definition, it is considered to be the subjective human understandability of the
representation of the knowledge learned by the system. As a subjective quality, it is
somewhat difficult to present, particularly when the knowledge representation exists
in a highly multi-dimensional space. It is also important that we avoid using out pre-
existing knowledge of a problem’s structure in evaluating the explanatory power of
resulting knowledge representations.

7.1 Visualization of Explanatory Power

In an attempt to visualize the relative explanatory power of knowledge representa-
tions, we have developed the following procedure. Consider a structural element of

 A Learning Classifier System with Mutual-Information-Based Fitness 147

the knowledge representation (in particular, a rule). We will represent this rule as a
circle, where the diameter reflects the element’s generality. We will characterize the
overlap of the receptive fields (conditions) of these elements by the overlap of the cir-
cles. The color of the circles will represent their output (actions).

Each circle will act as a simulated mass, connected to the other circles via springs,
whose spring force is zero when the desired overlap is obtained. If rules do not over-
lap, we consider the difference between them to determine the relaxed spring distance
between corresponding circles. Dampers between the circles are added (to insure con-
vergence). Given this, we can use a simple dynamic systems simulation that iterates to
an equilibrium, which will represent the nature of the knowledge in the system in a
simple, two-dimensional space.

To make a valid comparison that is not built on pre-existing knowledge of the
problem at hand, the visualization will include all elements (rules) that play a role in
the output determination of the final system. In XCS exploitation mode, the following
factor is computed:

() ()prediction fitness fitness×∑ ∑ (2)

over all matching rules, for all actions, and the action with the highest factor is se-
lected. Therefore, since all the rules participate in action selection, we include all
these rules in our visualization.

However, in MILCS on an “exploitation” trial, only the rules with action-selection
maturity above a threshold are employed. The rule, either matched or not matched,
with the maximum predicted reward is always selected as the rule that acts. Therefore,
only these rules are used in our visualization.

Figure 8 and Figure 9 show visualizations of the final rule sets from XCS and
MILCS (respectively) applied to the 6 multiplexer. The smaller, final MILCS rule set,
and its inclusion of only perfect generalizations is clear. We believe that this visuali-
zation shows the superior explanatory power of the resulting rule set in a way that
does not depend on human understanding of the rule-form of a correct final solution
for this particular problem.

Fig. 8. Visualization of the final rule set developed by XCS on the 6 multiplexer

148 R.E. Smith and M.K. Jiang

Fig. 9. Visualization of the final rule set developed by MILCS on the 6 multiplexer

Fig. 10. Visualization of the final rule set developed by XCS on the 11 multiplexer

Fig. 11. Visualization of the final rule set developed by MILCS on the 11 multiplexer

 A Learning Classifier System with Mutual-Information-Based Fitness 149

Figure 10 and Figure 11 show visualizations of the final rule sets from XCS and
MILCS (respectively) applied to the 11 multiplexer. Once again, the superior explana-
tory power of the MILCS rule set is apparent. As in the 6 multiplexer, a decision sur-
face between the two actions is apparent, even after the projection of the rule set to a
two dimensional space.

Fig. 12. Visualization of the final rule set developed by XCS on the 20 multiplexer

Fig. 13. Visualization of the final rule set developed by MICS on the 20 multiplexer

150 R.E. Smith and M.K. Jiang

Figure 12 and Figure 13 show visualizations of the final rule sets from XCS and
MILCS (respectively) applied to the 20 multiplexer. While a linear decision surface is
no longer apparent in the MILCS result, the less complex structure of the MILCS rule
set when compared to the XCS rule set is apparent. Note that while only some small
portion of the final XCS rule set are perfect generalizations, and a human could detect
these with knowledge of the multiplexer. That would not be the case in a problem of
unknown structure.

7.2 Coordination Number Problem

Coordination Number Prediction is one of the popular approaches to prediction the
3D structure of a protein. It is defined as the prediction, for a given residue, of the
number of residues from the same protein that are in contact with it. Two residues are
said to be in contact when the distance between the two is below a certain threshold.
A simplified protein model, the HP model, has been used to understand protein struc-
ture prediction. This model represents the sequence of a protein using two residue
types: hydrophobic can polar. We have produced preliminary results on this simpli-
fied, two-state CN prediction of real proteins with source data provided by Stout et al.
in 16. In order to show a thorough comparison, we present these results, along with
results obtained from XCS (using 4) and GAssist 1. GAssist is a Pittsburgh-style
learning classifier system which has been recently used for many protein structure
prediction problems and achieved significant results 16. Accuracy results presented
here use the same training and testing procedures as those in 16.

We tested all three classifier systems on 3 different window sizes for 2 state predic-
tions.

For XCS, we employ the same parameter settings for the 20 multiplexer problem
whereas MILCS parameter settings are shown in Table 5.

Table 5. MILCS parameters for the CN problem

Window size 1 2 3
MAX_POP_SIZE 100 200 300
THETA_GA 25 25 25
DONT_CARE_PROB 0.66 0.66 0.66
INIT_POP_SIZE 50 50 50
MATURITY_ACT_SELECT 450 450 450
MATURITY_SUB 400 400 400
THETA_SUB 20 20 20
MATURITY_DEL 450 450 450
DEL_WINDOW_SIZE 3200 3200 3200

GAssist results were generously provided by the authors of 16. Results are shown

in Table 6.. In XCS and MILCS, the representation was one bit each for the “H”, “P”,
and “not present” conditions of the neighboring residues, and one bit each for the “H”
and “P” conditions of the target residue. For instance, with window size 1 this yields a
7-bit condition, given that there are two neighboring residues (3 bits each), and the

 A Learning Classifier System with Mutual-Information-Based Fitness 151

target residue (2 bits). This sparse encoding was used for consistency with the GAs-
sist representation.

Note that for each algorithm, “Max Evals” is the number of evaluations in a run,
and this most likely represents a high upper bound on the number of evaluations re-
quired to get results of the indicated quality. However, these numbers do indicate the
relative order of magnitudes of convergence times for results shown. Rule set size re-
flects the number of rules participating in action selection at the end of each run.
MILCS performance is statistically similar to GAssist, which provides the best re-
sults. MILCS results in larger rule sets than GAssist, but converges an order of mag-
nitude faster. XCS does not perform as well as MILCS or GAssist overall. While
these results are preliminary, and we feel we can improve MILCS performance, they
are promising.

Table 6. Results of XCS, MILCS, and GAssist on two-state (HP) CN problems of various win-
dow sizes

Window
size

Method Accuracy Final rule set
size

Max evals

1 XCS 60.3% ±4.7% 53.1 100000
1 MILCS 63.6% ±0.5% 8.2 100000
1 GAssist 63.6% ±0.6% 4 8000000
2 XCS 61.1% ±3.6% 197.8 100000
2 MILCS 63.9% ±0.6% 15.0 100000
2 GAssist 63.9% ±0.6% 4.4 8000000
3 XCS 61.6% ±3.3% 371.2 250000
3 MILCS 63.3% ±0.8% 40.2 100000
3 GAssist 64.4% ±0.5% 4.8 8000000

8 Final Comments and Future Directions

Preliminary results with MILCS are promising, with respect to accuracy, speed, and
explanatory power. While MILCS seems to scale slightly worse than XCS, this may
not be an entirely fair comparison, since our preliminary results show that MILCS
finds a smaller, more explanatory rule set. We believe this superior effect is to be ex-
pected, given the firm information theoretic basis of the mutual information fitness
function.

Evaluating the system on more problems is the clearest direction for further inves-
tigation.

However, the concepts in MILCS are not specific to the particulars of a rule learn-
ing system. Exploring a neural network system that employs a similar structural learn-
ing paradigm is also a promising direction for future investigation. The use of mutual
information in this fashion may also have application in supervised learning of other
knowledge representations.

While the focus of this work has been on supervised learning, it is possible that the
system may be adapted to reinforcement learning. Note that to some extent, XCS al-
ready adapts reinforcement learning to supervised learning, in its tendency to learn a
complete “model” of the long term payoff function across the state/action space. The

152 R.E. Smith and M.K. Jiang

mapping from state/action to payoff is a supervised learning problem, drawing on
Bellman optimality and Q-learning the appropriate target values and error functions.

It will also be interesting to further investigate the visualization technique em-
ployed in this paper to compare explanatory power in a larger variety of knowledge
representations.

Acknowledgements

The authors greatly acknowledge support provided by the UK Engineering and Physi-
cal Sciences Research Council (EPSRC) under grant GR/T07534/01.

References

1. Bacardit, J.: Pittsburgh Genetics-Based Machine Learning in the Data Mining era: repre-
sentations, generalization, and run-time. PhD thesis, Ramon Llull University, Barcelona,
Catalonia, Spain (2004)

2. Bernadó-Mansilla, E.: Accuracy-Based Learning Classifier Systems: Models. Analysis and
Applications to Classification Tasks. Evolutionary Computation 11(3) (2003)

3. Butz, M. V.: Documentation of XCS+TS C-Code 1.2. IlliGAL report 2003023, University
of Illinois at Urbana-Champaign(Source code) (2003),
ftp://gal2.ge.uiuc.edu/pub/src/XCS/XCS1.2.tar.Z

4. (+ tournament selection) classifier system implementation in C, version 1.2 (for IlliGAL
Report 2003023, University of Illinois Genetic Algorithms Laboratory) (2003),
ftp://gal2.ge.uiuc.edu/pub/src/XCS/XCS1.2.tar.ZXCS,
ftp://gal2.ge.uiuc.edu/pub/src/XCS/XCS1.2.tar.Z

5. Fahlman, S.E., Lebiere, C.: The Cascade-Correlation learning algorithm. In: Advances in
Neural Information Processing Systems 2. Morgan Kaufmann, San Francisco (1990)

6. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addi-
son-Wesley, Reading (1989)

7. Heckerman, H.: A Tutorial on Learning with Bayesian Networks, Technical Report, MSR-
TR-95-06 (1996)

8. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press, Cam-
bridge (1992)

9. Holland, J., Holyoak, K.J., Nisbett, R.E., Thagard, P.: Induction: Processes of Inference
Learning and Discovery. MIT Press, Cambridge (1986)

10. Lanzi, P.L.: xcslib: source code, http://xcslib.sourceforge.net/
11. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: XCS with Computed Prediction

for the Learning of Boolean Functions. Evolutionary Computation 1, 588–595 (2005)
12. Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical Jour-

nal 27, 379–423,623–656 (1948)
13. Shannon, C.E.: Communication in the presence of noise. Proc. Institute of Radio Engi-

neers 37(1), 10–21 (1949)
14. Smith, R.E., Cribbs, H.B.: Is a classifier system a type of neural network? Evolutionary

Computation 2(1), 19–36 (1994)
15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cam-

bridge (1998)

 A Learning Classifier System with Mutual-Information-Based Fitness 153

16. Stout, M., Bacardit, J., Hirst, J., Krasogor, N., Blazewicz, J.: From HP lattice models to
real proteins: coordination number prediction using learning classifier systems. In: 4th
European Workshop on Evolutionary Computation and Machine Learning in Bioinformat-
ics (2006)

17. Wilson, S.W.: Classifier Fitness based on Accuracy. Evolutionary Computation 3(2), 149–
175 (1994)

18. Wilson, S.W.: ZCS: A Zeroth-Level Classifier System. Evolutionary Computation 2(1), 1–
18 (1994)

19. Wilson, S.W.: Generalization in the XCS classifier system. In: Koza, J.R., Banzhaf, W.,
Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H.,
Riolo, R. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference,
pp. 665–674. Morgan Kaufmann, San Francisco (1998)

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 154–168, 2008.
© Springer-Verlag Berlin Heidelberg 2008

On Lookahead and Latent Learning in Simple LCS

Larry Bull

School of Computer Science
University of the West of England

Bristol BS16 1QY, U.K.
Larry.Bull@uwe.ac.uk

Abstract. Learning Classifier Systems use evolutionary algorithms to facilitate
rule- discovery, where rule fitness is traditionally payoff based and assigned
under a sharing scheme. Most current research has shifted to the use of an
accuracy-based scheme where fitness is based on a rule’s ability to predict the
expected payoff from its use. Learning Classifier Systems that build
anticipations of the expected states following their actions are also a focus of
current research. This paper presents a simple but effective learning classifier
system of this last type, using payoff-based fitness, with the aim of enabling the
exploration of their basic principles, i.e., in isolation from the many other
mechanisms they usually contain. The system is described and modelled, before
being implemented. Comparisons to an equivalent accuracy-based system show
similar performance. The use of self-adaptive mutation in such systems in
general is then considered.

1 Introduction

Holland’s Learning Classifier System (LCS) [1976] represents a form of machine
learning which exploits evolutionary computing to produce inductive structures
within an artificial entity. Typically, such systems use stimulus-response rules to form
chains of reasoning. However, Holland’s architecture has been extended to include
mechanisms by which higher levels of cognitive capabilities, along the lines of those
envisaged in [Holland et al., 1986], can emerge; the use of predictive modelling
within LCS has been considered through alteration to the rule structure [e.g., Riolo,
1991]. Using maze tasks loosely based on those of early animal behaviour
experiments, it has been found that LCS can learn effectively when reward is
dependent upon the ability to accurately predict the next environment state/sensory
input. LCS with such ’lookahead’ typically work under latent learning, i.e., they build
a full predictive map of the environment without external reinforcement. LCS of this
general type have gained renewed interest after Stolzmann presented the heuristics-
based ACS [Stolzmann, 1998]. ACS was found to produce over-specific solutions
through the workings of its heuristics and was later extended to include a Genetic
Algorithm (GA)[Holland, 1975] - ACS2 [Butz & Stolzmann, 2002]. Bull [2002]
presented an extension to Wilson’s simple payoff-based LCS - ZCS [Wilson, 1994] -
which is also able to form anticipations under latent learning. Significantly, this was
the first anticipatory system to build such models through the GA alone; Riolo [1991]

 On Lookahead and Latent Learning in Simple LCS 155

did not include a GA. Most current work in LCS has shifted to using accuracy as rule
fitness, after Wilson presented XCS [Wilson, 1995]. Bull [2004] presented a simple
accuracy-based LCS which can create such anticipations using only the GA – YCSL.
In this paper, a simple payoff-based LCS which can create anticipations using
only the GA is presented and explored, based on the ZCS-derived system MCS
[Bull, 2005].

2 MCSL: A Simple Anticipatory Classifier System

In this paper, as in ACS and its related systems such as YACS [Gerard & Sigaud,
2002], and in [Bull, 2002; 2004], an explicit representation of the expected next
environmental state is used to create a simple payoff-based anticipatory LCS which
uses lookahead under latent learning - MCSL. That is, rules are of the general form:

<condition> : <action> : <anticipation>

Generalizations (#’s) are allowed in the condition and anticipation strings. Where
#’s occur at the same loci in both, the corresponding environmental input symbol
’passes through’ such that it occurs in the anticipated description for that input.
Similarly, defined loci in the condition appear when a # occurs in the corresponding
locus of the anticipation. MCSL is a Learning Classifier System without internal
memory, where the rulebase consists of a number (N) of rules with the above form.
Associated with each rule is a fitness and where the initial random population have
this initialized to 10.

On receipt of an input message, the rulebase is scanned, and any rule whose
condition matches the message at each position is tagged as a member of the current
match set [M]. An action is then chosen from those proposed by the members of the
match set at random and all rules proposing the selected action form an action set [A].

Although the use of fitness sharing for externally received payoff (P) had been
suggested before [e.g., Holland, 1985], it was not until Wilson introduced the action
set-based scheme in ZCS that simple but effective fitness sharing in LCS became
possible [Bull & Hurst, 2002]. MCSL, like MCS, uses the fitness sharing mechanism
of ZCS, i.e., within action sets. Reinforcement consists of updating the fitness f of
each member of the current [A] using the Widrow-Hoff delta rule with learning rate
β. Payoff is divided equally amongst all members of [A]:

fj fj + β ((P / |[A]|) - fj) (1)

MCSL employs two discovery mechanisms, a GA and a covering operator. On
each time-step there is a probability g of GA invocation. When called, the GA uses
roulette wheel selection to determine two parent rules from the population based on
their fitness. All parts of the rules are considered to be concatenated together for the
GA. Offspring are produced via mutation (probability µ, turned into a wildcard at rate
p#) and crossover (single point with probability χ), inheriting the parents’ fitness
values or their average if crossover is invoked. Replacement of existing members of
the rulebase is inversely proportional to fitness, i.e., 1/(fj +1), using roulette wheel
selection. If no rules match on a given time step, then a covering operator is used
which creates a rule with the message as its condition (augmented with wildcards at

156 L. Bull

the rate p#) and a random action and anticipation, which then replaces an existing
member of the rulebase in the usual way. It is assigned the default fitness f0.

Hence MCSL represents a simple anticipatory LCS which relies solely upon the
GA to search the space of possible generalizations; other heuristics need not be
considered as pre-requisites for the effective use of a payoff-based fitness scheme.
Here the term effective is taken to mean able to solve problems of low complexity
whilst remaining open to close modelling; the canonical GA may be defined in much
the same way. The mechanisms of MCSL are now modelled, in keeping with its
philosophy, in a simple way.

3 A Simple Model of MCSL

The evolutionary algorithm in MCSL is a steady-state GA. A simple steady-state GA
without genetic operators can be expressed in the form:

n(k, t+1) = n(k, t) + n(k, t) R(k, t) - n(k, t) D(k, t) (2)

where n(k, t) refers to the number of individuals of type k in the population at time t,
R(k, t) refers to their probability of reproductive selection and R(k, t) to their
probability of deletion. Roulette-wheel selection is used, i.e., R(k, t) = f(k, t)/f(K, t),
where f(k, t) is the fitness of individuals of type k (Equation 1) and f(K, t) is the total
population (K) fitness. Replacement is inversely proportional to fitness as described
above.

Table 1 shows the error ’rewards’ for each of the rules considered. Those rules
which experience two rewards have the average shown. Figure 1 shows the maze
environment from which the errors are drawn. The maze contains two locations, one
providing the LCS with input ’0’ and the other with input’1’. In both locations an
action ’0’ means no move and action ’1’ means a move to the other location.

Table 1. Rewards for the modelled maze task

C:A:Ant Reward C:A:Ant Reward C:A:Ant Reward

0:0:0 1000 1:0:0 0 #:0:0 500
0:0:1 0 1:0:1 1000 #:0:1 500
0:0:# 1000 1:0:# 1000 #:0:# 1000
0:1:0 0 1:1:0 1000 #:1:0 500
0:1:1 1000 1:1:1 0 #:1:1 500
0:1:# 0 1:1:# 0 #:1:# 0

The rulebase is of size N=400 and the initial proportions of each rule in the

population are equal (N/18), and β=0.2. It is assumed that both inputs are presented
with equal frequency, that both actions are chosen with equal frequency and that the
GA fires once every four cycles (i.e., g=0.25). The rules’ parameters are updated
according to Equation 1 on each cycle.

 On Lookahead and Latent Learning in Simple LCS 157

Fig. 1. Simple two location maze considered

Figure 2 shows the behaviour of the modelled MCSL on the simple maze task.

Figure 2(a) shows how only the rules which accurately anticipate the next state (i.e.,
following their action being taken in the locations they match) exist in the final
population. The rulebase is roughly divided between rules with action ’0’ and those
with action ’1’ but there is no explicit pressure for a maximally general solution.
Figure 2(b) shows the corresponding trajectories of the rules’ fitnesses with all
accurate anticipators having the same – highest - fitness. Therefore the simple payoff-
based fitness scheme of MCSL results in a rulebase which completely maps the maze
environment under a latent learning scenario.

 (a) (b)

Fig. 2. Behaviour of model MCSL on the maze task, showing numerosity (a) and fitness (b)

As noted above, Bull [2004] has previously presented a simple accuracy-based
anticipatory system, YCSL. Instead of maintaining a single fitness parameter, each
rule maintains two parameters, an error (ε) in the rule’s prediction abilities and an
estimate of the average size of the niches in which that rule participates (σ) updated as
follows:

State 0 State 1

action 0

action 0

action 1

158 L. Bull

εj εj + β(E - εj) (3)

σj σj + β(|[A]| - σj) (4)

where E is zero if the anticipation of the given rule correctly describes the following
state, otherwise 1000. Fitness is inversely proportional to the error, i.e., 1/(εν+1), and
replacement uses σ. Again, the system is simple enough to be amenable to direct
modelling using equation 2, as shown in Figure 3 (from [Bull, 2004]).

 (a) (b)

Fig. 3. Behaviour of model YCSL on the maze task, showing numerosity (a) and error (b)

Comparison between the two systems indicates that both are equally able to build a

correct model of the simple maze. The population in MCSL is faster to reach its
steady state (by approximately 1000 generations) despite the errors in YCSL reaching
their steady state very much more quickly than the fitnesses in MCSL.

4 MCSL in T-Mazes

MCSL has been implemented and investigated using a version of the T-maze
presented in [Riolo, 1991]. As noted above, motivation for exploring the use of
learning without external reinforcement comes from early experiments in animal
behaviour. Typically, rats were allowed to run around a T-maze, as shown in
Figure 4, where the food cell (state 7) would be empty but a different colour to the
rest of the maze. The rats would then be fed in the marked location. Finally, the rats
were placed at the start location (state 0) and their ability to take the shortest path (go
left at the T-junction in Figure 4) to the food recorded. It was found that rats could do
this with around 90% efficiency. Those which were not given the prior experience
without food were only 50% efficient, as expected [e.g., Seward, 1949].

To examine the performance of the simple anticipatory LCS presented here the
following scenario is used. The LCS is placed randomly in the maze and a matchset is
formed. Sensory input in each location of the maze is the binary encoded number for
that state (3 bits) and there are four possible actions - Left, Right, Forwards and

 On Lookahead and Latent Learning in Simple LCS 159

Fig. 4. T-maze considered. A backwards move always causes a move to the location on the left
(except state 0)

Backwards (2 bits). An action is chosen at random from the matchset. All rules
which propose the chosen action are updated as described in Section 2 and the GA fires
probabilistically. That is, each rule in [A] has the anticipation it created on forming [M]
compared to the state into which the LCS has since moved. If it matches, a reward of
1000 is given, otherwise 0. The LCS is then randomly placed in another location and the
process repeated (in keeping with the previous model). The average specificity (fraction
of non-# symbols) of the condition and anticipation is recorded, as is the number of
actions present in each [M], with results shown the average of ten runs.

Figure 5 shows the performance of MCSL on the simple T-maze using the same
parameters as in Section 3, with p#=0.33, χ=0.5 and µ=0.01 under the same training
scheme. Figure 5(a) shows how the fraction of individuals in a given [A] which
accurately predict the next state rises to around 1 (50-point moving average, after
[Wilson, 1994]) and the average specificity drops to around 50% indicating the
exploitation of generalizations. Figure 5(b) shows how all four actions are present and
maintained in each [M] throughout learning. Hence MCSL is able to build a complete
and accurate anticipatory map of the simple T-maze (assuming the most numerous
anticipation within a given [A] is used in internal processing/planning).

YCSL was applied to the same maze with the same parameters in [Bull, 2004], as
shown in Figure 6(a). Figure 6(a) shows how the fraction of trials upon which the rule
with the highest fitness has a correct anticipation very quickly rises to 1 (50-point
moving average used) and the average specificity drops to around 45% indicating a
slightly better level of generalization. The number of actions per [M] was maintained
at four throughout (not shown). Hence YCSL is also able to build a complete and
accurate anticipatory map of the simple T-maze (assuming the anticipation with the
highest fitness within a given [A] is used in internal processing/planning).

Under the standard reinforcement learning scenario, the fitness sharing mechanism
in MCS has been found to benefit from a maximally high learning rate and high GA
activity [Bull, 2005], i.e., β=1.0 and g=1.0. Payoff-based LCS using fitness sharing
hold their estimation of utility in rule numerosity and therefore the instantaneous
fitness update means a rule’s fitness can immediately consider the current numerosity,
something which is constantly changed by the actions of the GA; it appears that a
high learning and GA rate allows the LCS to approximate rule utility more efficiently.
Figure 6(b) shows how the change means MCSL learns faster than before and
produces a solution as general as YCSL.

160 L. Bull

 (a) (b)

Fig. 5. Fraction of [A] with correct anticipation (a) and number of actions per [M] (b)

 (a) (b)

Fig. 6. YCSL performance on T-maze (a) and MCSL with β=1.0, g=1.0 (b)

The maze in Figure 4 is somewhat simple and hence MCSL has also been tested
using a more complex version along the lines of other maze tasks typically used in the
LCS literature (after [Wilson, 1994]) - Woods 10 [Bull, 2002] (Figure 7). The LCS is
placed randomly in the maze and a matchset is formed as before. Sensory input in
each location of the maze is encoded as a 16-bit binary string with two bits
representing each cardinal direction. A blank cell is represented by 00, the food
location (F) by 11 and trees (T) by 10 (01 has no meaning). The message is ordered
with the cell directly above the LCS represented by the first bit-pair and then proceeds
clockwise around it. Again, an action is chosen at random from the matchset where
there are now eight possible actions (cardinal moves) and the LCS can move into any
one of the surrounding eight cells on each discrete time step, unless occupied by a tree
or it is the food location (this avoids creating a sensory ambiguity). All rules which
propose the chosen action are updated and all other details are as before. One further
mechanism is incorporated for this harder task (after [Bull, 2002]): the first N random

 On Lookahead and Latent Learning in Simple LCS 161

rules of the rulebase have their anticipation created using cover (with #’s included as
usual) in the first [A] of which they become a member. This goes some way to make "
... good use of the large flow of (non-performance) information supplied by the
environment." [Holland, 1990]. Rules created under the cover operator also receive
this treatment. In this way the GA explores the generalization space of the antic-
ipations created by the simple heuristic.

Figure 8(a) shows how the system as used in Figure 6(b), but with N=5000, p#=0.6
and µ=0.04 (after [Bull, 2004]), is unable to produce a full model of Woods 10.
Indeed, the system appears to predict a low number of actions, with increasing
specificity, and the rule with the highest numerosity in those few [A] rarely
anticipates the next state correctly.

Under the operations of the GA within ZCS there is a reproduction cost such that
parents give half of their fitness to their offspring. No explanation for this mechanism
is given in [Wilson, 1994] but it has been suggested that it reduces "the initial
’runaway’ success of those rules in high payoff niches" [Bull & Studley, 2002]. That
is, once a rule has reproduced, it and its offspring are much less likely to be picked
again under the global GA until their niche occurs, at which point they are assigned a
new fitness appropriate for the current numerosity. This last point was shown to be
significant above and is fundamental to the way in which fitness sharing avoids
overgeneral rules since it removes any advantage in difference between niche payoff
levels [Bull & Hurst, 2002]; the payoff available to individual rules becomes the same
in all niches once numerosities have been adjusted appropriately by the GA.

Bull [2005] presented a tuneable mechanism with which to achieve the same
general dynamic within the fitness sharing process - default fitness allocation (DFA) –
where offspring and parents have their fitnesses set to f0. Using well-known Boolean
problems it was suggested that the fitness halving scheme does not scale as well as
DFA. Figures 8(b) and 9(b) show how both mechanisms appear to work equally well
within MCSL. Eight actions were maintained throughout in both cases (not shown).
This result corresponds with those reported in [Bull, 2002] where ZCS was
successfully extended to build anticipations in Woods 10 and other mazes. Figure 9(a)
shows how performance is equivalent to that of YCSL with XCS’s triggered niche
GA (θGA=100) and increased fitness scaling (ν=10), as discussed in [Bull, 2004].

Fig. 7. The Woods 10 maze

162 L. Bull

 (a) (b)

Fig. 8. Fraction of [A] with correct anticipation and number of actions per [M] (a) and with
DFA heuristic (b)

 (a) (b)

Fig. 9. YCSL performance on same T-maze (a) and MCSL with fitness halving (b)

5 Self-adaptive Mutation

Typically in LCS, as within GAs, the parameters controlling the algorithm are global
and remain constant over time. However this is not always the case in evolutionary
computing; in Evolution Strategies [Rechenberg, 1973], forms of Evolutionary
Programming (Meta-EP) [Fogel, 1992] and in some GAs (e.g., [Bäck, 1992]), the
mutation rate is a locally evolving entity in itself, i.e., it adapts during the search
process. This self-adaptive form of mutation not only reduces the number of hand-
tunable parameters of the evolutionary algorithm, it has also been shown to improve
performance (e.g., [Bäck, 1992]). The approach has been used to add adaptive
mutation to both ZCS and XCS [Bull et al., 2000], and to control other system
parameters, such as the learning rate, in ZCS [Hurst & Bull, 2001] and XCS [Hurst &

 On Lookahead and Latent Learning in Simple LCS 163

Bull, 2002] (see also [Bull et al., 2005][Wyatt & Bull, 2004] for other uses of
parameter self-adaptation in LCS). The results presented demonstrate that adaptive
parameters can provide improved performance, particularly in dynamic environments.
It can be noted that the general idea of automatically setting parameters in LCS was
first suggested in [Dorigo & Colombetti, 1997].

In the previous work, a single self-adapting mutation rate parameter was added to
each rule. That is, each rule has its own mutation rate µ, stored as a real number and
initially seeded uniform randomly in the range [0.0,1.0]. This parameter is passed to
its offspring either under recombination or directly. The offspring then applies its
mutation rate to itself using a Gaussian distribution, i.e., µi

' = µi e
N(0,1), before mutating

the rest of the rule at the resulting rate. Figure 10(a) shows how the approach can be
successfully used within MCSL in Woods 10 using all other parameters as before.
There is a significant rise (T-test, P<0.05) in the specificity of the solution produced
however compared with the fixed single mutation rate of µ=0.04 used in Figure 8(b).
This despite the mean mutation rate dropping considerably lower than the fixed rate.
The equivalent YCSL (Figure 10(b)) no longer produces a solution such that the
fittest rule in a niche always accurately anticipates the next state and it suffers an even
larger rise in average specificity. Bull et al. [2000] noted a greater sensitivity to the
self-adapting mutation rate in XCS compared to ZCS in a number of problems. Bull
[2001] confirmed the accuracy-based fitness scheme’s greater sensitivity to the
(fixed) mutation rate using simple Markov models of both schemes. Butz et al. [2003]
have also examined this formally for XCS, concluding “mutation can have a negative
effect when set too high possibly disrupting subsolutions”.

The creation of an anticipatory system through the GA alone means the
evolutionary process is designing rule structures of increased complexity in
comparison to the traditional stimulus-response rules. It may therefore be beneficial to
increase the freedom of the mutation operator to search the sub-spaces of the different
parts of the rule encoding at different rates; improvements in performance may be
possible with separate self-adapting mutation rates for the condition, action and
anticipation. This has been explored with each mutation rate adapting as before.

 (a) (b)

Fig. 10. MCSL with single self-adaptive mutation rate in Woods 10 (a) and equivalent YCSL (b)

164 L. Bull

 (a) (b)

Fig. 11. MCSL with a self-adaptive mutation rate for each of the condition, action, and
anticipation (a) and in the equivalent YCSL (b)

Figure 11(a) shows how the use of a separate self-adapting mutation rate for each

component of a rule can be used successfully in MCSL, with the rate for the action
component adapting differently to those of the condition and anticipation. Specificity
is still higher than with the fixed rate as a consequence however but less than that
seen with the single adapting parameter. No significant increase in learning speed is
seen, again solutions appear to settle after around 200,000 problems, which is faster
than with the fixed rate which typically settle to a solution after around 300,000
problems; a more specific solution is learnt more quickly. Figure 11(b) shows how
with YCSL the same difference in mutation rate for the action and the condition and
anticipation is again seen. A decrease in the average specificity is also obtained with
the three mutation rates but it is again still more specific than with the fixed rate. The
fittest rule in each action set is again not always an accurate predictor of the next
environmental state, as it was in Figure 9(a) with the fixed mutation rate.

Typically under Evolution Strategies every dimension of a given solution is treated
separately by mutation such that each individual consists of n variables and n
mutation rates. The updating of the mutation rate is then µi‘ = µi e N(0, 1) + N

i
(0, 1). That

is, a common offset is first determined for all variables and then each variable
determines a further local offset, both from a Gaussian distribution. The same
approach has been tried in MCSL and YCSL. Figure 12 shows that this scheme has
little effect over the previous two: solutions are more specific than with the fixed rate
and YCSL is unable to produce an accurate map using the fittest niche rule approach.

The increase in average specificity of rules in YCSL results in a decrease in
performance since accurate anticipators are not discovered in each of the 80 niches
(10 locations, 8 possible actions in each) in the time allowed. Therefore niche
populations of approximately 5000/80 = 40 rules appear insufficient when the
mutation rate is inappropriately high during the early part of the search. Experiments
seeding the initial mutation rate spreads in the range [0,0.5] gave no improvement
(not shown). Figure 13 shows the effects of increasing the population size, N=15,000.
That is, it appears YCSL is failing to satisfy something akin to the “cover challenge”,

 On Lookahead and Latent Learning in Simple LCS 165

 (a) (b)

Fig. 12. MCSL with a self-adaptive mutation rate for each gene (a) and in the equivalent YCSL (b)

as identified by Butz et al. [2003], wherein the population is not large enough to
sustain all accurate rules discovered at a given time and produce new ones to cover
other inputs. Therefore the cover and GA replacement operators cause the constant
deletion of required rules. As can be seen, with a larger population the system is again
optimal in its map building assuming the fittest rule in each [A] is chosen for
planning.

6 Conclusions

Learning Classifier Systems that build a full predictive map of the environment
without external reinforcement have recently gained renewed interest. This paper has
presented a simple payoff-based system, termed MCSL, which is capable of this task
using only the genetic algorithm. Due to its simplicity, an executable model of MCSL
has been presented and its finding that optimal performance is possible with such a
system was confirmed experimentally. However, it was found that a generalization
pressure mechanism was required for a harder maze task. The performance and
general characteristics of MCSL were compared to a simple accuracy-based
anticipatory LCS and little difference seen.

The use of self-adaptive mutation within such systems was also explored. Results
suggest that only in the payoff-based scheme is there some benefit in the maze used
from more than a single mutation rate per rule, as was previously implemented [Bull
et al., 2000]. Future work should consider non-stationary mazes, as in [Hurst & Bull,
2003] for example. Results also confirm that accuracy-based fitness is more sensitive
to the mutation rate than payoff-based fitness.

In contrast to using a purely evolutionary approach, O’Hara and Bull [2005] have
highlighted the supervised nature of creating anticipations (see [Lanzi, 2003] for a
related study). They present an approach wherein each rule also carries an artificial
neural network. The network takes the current stimulus and action as an input and
produces the expected next sensory state as its output. These mappings are learned

166 L. Bull

Fig. 13. YCSL with a self-adaptive mutation rate for each gene and a larger population

under a standard incremental supervised learning protocol; each received input after
an action is used to further train the network. Future work should consider hybrid
systems, as represented by ACS2, perhaps based on the neural rule representation,
particularly for continuous-valued spaces. The GA could be exploited to design
appropriate prediction network structure, for example (see [Bull & Hurst, 2003] for a
purely GA-based approach in this direction).

References

Back, T.: Self-Adaptation in Genetic Algorithms. In: Varela, F.J., Bourgine, P. (eds.) Toward a
Practice of Autonomous Systems: Proceedings of the First European Conference on
Artificial Life, pp. 263–271. MIT Press, Cambridge (1992)

Booker, L.B.: Triggered Rule Discovery in Classifier Systems. In: Schaffer, J.D. (ed.)
Proceedings of the Third International Conference on Genetic Algorithms, pp. 265–274.
Morgan Kaufmann, San Francisco (1989)

Bull, L.: Simple Markov Models of the Genetic Algorithm in Classifier Systems. In: Lanzi, P.L.,
Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 29–36.
Springer, Heidelberg (2001)

Bull, L.: Lookahead and Latent Learning in ZCS. In: Langdon, W.B., Cantu-Paz, E., Mathias, K.,
Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L.,
Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO-2002:
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 897–904. Morgan
Kaufmann, San Francisco (2002)

Bull, L.: Lookahead and Latent Learning in a Simple Accuracy-based Learning Classifier
System. In: Yao, X., et al. (eds.) Parallel Problem Solving from Nature - PPSN VIII,
pp. 1042–1050. Springer, Heidelberg (2004)

Bull, L.: Two Simple Learning Classifier Systems. In: Bull, L., Kovacs, T. (eds.) Foundations
of Learning Classifier Systems, pp. 63–90. Springer, Heidelberg (2005)

Bull, L., Hurst, J.: ZCS Redux. Evolutionary Computation 10(2), 185–205 (2002)

 On Lookahead and Latent Learning in Simple LCS 167

Bull, L., Hurst, J.: Lookahead and Latent Learning in a Neural Learning Classifier System with
Self-Adaptive Constructivism. Technical Report UWELCSG03-012 (2003), http://
www.cems.uwe.ac.uk/lcsg

Bull, L., Studley, M.: Consideration of Multiple Objectives in Neural Learning Classifier
Systems. In: Merelo, J., Adamidis, P., Beyer, H.-G., FernandezVillicanas, J.-L., Schwefel,
H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 558–567. Springer, Heidelberg (2002)

Bull, L., Hurst, J., Tomlinson, A.: Self-Adaptive Mutation in Classifier System Controllers. In:
Meyer, J.-A., Berthoz, A., Floreano, D., Roitblatt, H., Wilson, S.W. (eds.) From Animals to
Animats 6 - The Sixth International Conference on the Simulation of Adaptive Behaviour,
pp. 460–470. MIT Press, Cambridge (2000)

Bull, L., Lawson, I., Adamatzky, A., De Lacy Costello, B.: Towards Predicting Spatial
Complexity: A Learning Classifier System Approach to Cellular Automata Identification.
In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 136–141. IEEE,
Los Alamitos (2005)

Butz, M.V., Wilson, S.W.: An Algorithmic Description of XCS. In: Lanzi, P.L., Stolzmann,
W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 253–272. Springer,
Heidelberg (2001)

Butz, M.V., Stolzmann, W.: An Algorithmic Description of ACS2. In: Lanzi, P.L., Stolzmann,
W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 211–230. Springer,
Heidelberg (2002)

Butz, M.V., Goldberg, D.E., Tharakunnel, K.: Analysis and Improvement of Fitness
Exploitation in XCS: Bounding Models, Tournament Selection, and Bilateral Accuracy.
Evolutionary Computation 11(3), 239–278 (2003)

Dorigo, M., Colombetti, M.: Robot Shaping. MIT Press, Cambridge (1997)
Gerard, P., Sigaud, O.: YACS: Combining Dynamic Programming with Generalization in

Classifier Systems. In: Lanzi, P.-L., Stolzmann, W., Wilson, S.W. (eds.) Advances in
Learning Classifier Systems: Proceedings of the Third International Workshop, pp. 52–69.
Springer, Heidelberg (2001)

Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press
(1975)

Holland, J.H.: Adaptation. In: Rosen, R., Snell, F.M. (eds.) Progress in Theoretical Biology,
vol. 4, pp. 263–293. Plenum (1976)

Holland, J.H.: Properties of the Bucket Brigade. In: Grefenstette, J.J. (ed.) Proceedings of the
First International Conference on Genetic Algorithms and their Applications, pp. 1–7.
Lawrence Erlbaum Associates, Mahwah (1985)

Holland, J.H.: Escaping Brittleness. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.)
Machine Learning: An Artificial Intelligence Approach, vol. 2, pp. 48–78. Morgan
Kauffman, San Francisco (1986)

Holland, J.H.: Concerning the Emergence of Tag-Mediated Lookahead in Classifier Systems.
Physica D 42, 188–201 (1990)

Holland, J.H., Holyoak, K.J., Nisbett, R.E., Thagard, P.R.: Induction: Processes of Inference,
Learning and Discovery. MIT Press, Cambridge (1986)

Hurst, J., Bull, L.: A Self-Adaptive Classifier System. In: Lanzi, P.L., Stolzmann, W., Wilson,
S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 70–79. Springer, Heidelberg (2001)

Hurst, J., Bull, L.: A Self-Adaptive XCS. In: Lanzi, P.-L., Stolzmann, W., Wilson, S.W. (eds.)
Advances in Learning Classifier Systems: Proceedings of the Fourth International Workshop
on Learning Classifier Systems, pp. 57–73. Springer, Heidelberg (2002)

168 L. Bull

O’Hara, T., Bull, L.: Building Anticipations in an Accuracy-based Learning Classifier System
by use of an Artificial Neural Network. In: Proceedings of the IEEE Congress on
Evolutionary Computation, pp. 2046–2052. IEEE Press, Los Alamitos (2005)

Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution. Frommann-Holzboog (1973)

Riolo, R.: Lookahead Planning and Latent Learning in a Classifier System. In: Meyer, J.-A.,
Wilson, S.W. (eds.) From Animals to Animats: Proceedings of the First International
Conference on Simulation of Adaptive Behaviour, pp. 316–326. MIT Press, Cambridge
(1991)

Seward, J.P.: An Experimental Analysis of Latent Learning. Journal of Experimental
Psychology 39, 177–186 (1949)

Stolzmann, W.: Anticipatory Classifier Systems. In: Koza, J.R. (ed.) Genetic Programming
1998: Proceedings of the Third Annual Conference, pp. 658–664. Morgan Kaufmann, San
Francisco (1998)

Wilson, S.W.: ZCS: A Zeroth-level Classifier System. Evolutionary Computation 2(1), 1–18
(1994)

Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2), 149–177
(1995)

Wyatt, D., Bull, L.: A Memetic Learning Classifier System for Describing Continuous-Valued
Problem Spaces. In: Krasnagor, N., Hart, W., Smith, J. (eds.) Recent Advances in Memetic
Algorithms, pp. 355–396. Springer, Heidelberg (2004)

A Learning Classifier System Approach to
Relational Reinforcement Learning

Drew Mellor

School of Electrical Engineering and Computer Science,
The University of Newcastle, Callaghan, 2308, Australia

Tel.: (+612) 4921 6071; Facsimile: (+612) 4921 6929
drew.mellor@newcastle.edu.au

Abstract. This article describes a learning classifier system (LCS) ap-
proach to relational reinforcement learning (RRL). The system, Foxcs-2,
is a derivative of Xcs that learns rules expressed as definite clauses over
first-order logic. By adopting the LCS approach, Foxcs-2, unlike many
RRL systems, is a general, model-free and “tabula rasa” system. The
change in representation from bit-strings in Xcs to first-order logic in
Foxcs-2 necessitates modifications, described within, to support match-
ing, covering, mutation and several other functions. Evaluation on induc-
tive logic programming (ILP) and RRL tasks shows that the performance
of Foxcs-2 is comparable to other systems. Further evaluation on RRL
tasks highlights a significant advantage of Foxcs-2’s rule language: in
some environments it is able to represent policies that are genuinely scal-
able; that is, policies that are independent of the size of the environment.

1 Introduction

Methods for reinforcement learning and supervised learning typically adopt a
representational framework known as the attribute-value framework. However,
despite the success of the attribute-value framework on a large variety of prob-
lems, researchers have recognised limitations to its expressive power; a more
expressive framework is provided by logic languages, such as languages over
first-order logic [33, Sect. 10.4]. The field of inductive logic programming (ILP)
[34] aims to utilise the expressive power of first-order logic by combining logical
representations with inductive methods from the supervised learning paradigm.
The successful development of ILP has recently motivated a corresponding trend
in reinforcement learning: relational reinforcement learning (RRL) [48,45]. As a
young field, many approaches to RRL are yet to be explored; this article presents
Foxcs-2,1 an approach based on the learning classifier system framework (LCS).

Amongst others, three desirable characteristics of reinforcement learning sys-
tems are that they: i) apply generally to the underlying problem framework,
Markov decision processes; ii) are model-free; that is, they can learn satisfactory
behaviour without a model, partial or complete, of the environment’s dynamics;

1 An earlier, proof-of-concept version of the system appears in [32].

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 169–188, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

170 D. Mellor

and iii) can learn “tabula rasa” without the need for initialisation with approx-
imate or candidate policies. Foxcs (the version number is dropped hereon in)
possesses all three qualities due to the LCS framework upon which it builds. In
contrast, most existing RRL systems do not; exceptions are [20,19,23,18,14] of
which [19,23,18] generalise using kernels and distance measures instead of using
the abstractive properties of variables, thus limiting the expressive power of the
logical representation. A demonstration of the utility of variables is provided in
Sect. 3.3, where the policies learnt scale up to larger environments without the
need for retraining. An additional advantage of the LCS framework is that due
to its rule-based approach it produces relatively comprehensible output; this is
particularly true of Foxcs because its rule language, first-order logic, can make
use of mnemonics.

Foxcs is derived from the accuracy based Xcs [49,50], which is perhaps the
most significant LCS implementation—it realises the majority of features from
Holland’s original framework [25] and also overcomes the problem of strong over-
general rules that had hindered earlier strength-based systems [26]. Recent analy-
sis supports the view that under favourable conditions Xcs has an inductive bias
towards the discovery of accurate, maximally general rules [9]. Empirical results
showing that the system is competitive with other machine learning approaches
have also been reported [1,2].

Originally, the Xcs system was specified to use bit-string rules but much sub-
sequent research focused on extending the representational capability of the sys-
tem. For instance, rule languages over continuous spaces [51,44,8,31], fuzzy logic
[13], S-expressions [30,29], and even multi-layer neural networks [6] have been
incorporated into Xcs. This diversity of representations suggests that the frame-
work underlying Xcs is largely representationally neutral and not dependent
upon one rule language or another. Further evidence for this view can be found
in the pressures that drive the inductive process within Xcs [10], most of which
operate independently of the rule language. For these reasons—performance
and language neutrality—Xcs is the most suitable LCS upon which to build
Foxcs.

The remainder of this article is set out as follows. First, the design of Foxcs

is described (Sect. 2); next, Foxcs is empirically evaluated on both ILP and
RRL tasks (Sect. 3); finally, some concluding remarks are made (Sect. 4). For
conciseness, the article assumes some familiarity with Xcs and the syntax of
first-order logic. Readers unfamiliar with Xcs might like to consult [49] for an
introduction or [12] for an algorithmic specification; for first-order logic, [24,36]
provide accounts in the context of artificial intelligence and ILP respectively.

2 System Design

Foxcs is a learning classifier system that evolves rules which are definite clauses
over first-order logic. The approach taken to the design of Foxcs was to ex-
tend Xcs by “upgrading” its representation to first-order logic; a conventional
approach within ILP (see [38,4,47] amongst many others). The intention behind

A LCS Approach to Relational Reinforcement Learning 171

State ActionReward

FOXCS

Rule base

Credit assignment

Rule discovery

Production subsystem

Markov decision process

1. rules, states, actions

3. matching

2. task specific,
user defined

rule language

5. covering and mutation

6. subsumption

4. match set

Fig. 1. The architecture of Foxcs with modified components indicated

this approach was that the biases present in Xcs, which are the result of sub-
stantial innovation and subsequent fine-tuning over many years, would remain
largely unaffected and could be directly leveraged by Foxcs. The version of Xcs

upon which Foxcs is based closely resembles the specification given in [12] with
some refinements: the use of tournament selection [11], action set covering [27]
and annealing of the learning rate.

Architecturally, the high-level design of Foxcs is identical to that of Xcs: a
four-tiered system consisting of a rule base, production subsystem, credit assign-
ment subsystem and rule discovery subsystem. However, components within the
subsystems have been modified to support representation with first-order logic.
Figure 1 shows the high-level architecture of Foxcs and locates the modifica-
tions, which are summarised below:

1. Rules, states, and actions are represented by expressions in first-order logic.
2. A task specific rule language is defined by the user of the system using special

language declaration commands.
3. The matching operation is redefined for first-order logic.
4. During the operational cycle, the match set is partitioned into non-disjoint

subsets, one for each possible action. On any particular cycle an individual
rule may belong to multiple subsets.

5. The covering and mutation operations are tailored for producing and adapt-
ing rules in first-order logic.

6. The test for subsumption deletion is redefined.

The following subsections describe these modifications in greater detail.

172 D. Mellor

2.1 Representation

The Foxcs system, like its parent Xcs, accepts inputs and produces rules; how-
ever, unlike Xcs these inputs and rules are expressed in a language over first-
order logic rather than as bit-strings.

A language in first-order logic, L, is a tuple 〈C, F , P , d〉, consisting of a set
of constant symbols C; a set of function symbols F (however, functions are
not supported by Foxcs, i.e. F = ∅); a set predicate symbols P ; and an arity
function d : F ∪P → Z, which specifies the number of arguments associated with
each element of F ∪ P . For the purpose of describing a task environment, it will
be convenient to partition P into three disjoint subsets, PS , PA and PB, which
contain the predicate symbols for states, actions and background knowledge
respectively.

Example 1. The blocks world environment, denoted bw
n, contains a finite collec-

tion of n blocks and a floor. Each block is associated with a label—for example, a
lower case letter of the alphabet—that uniquely identifies the block. Each block
either rests on top of exactly one other block or on the floor. If a block has
nothing on top of it then it is said to be “clear”, and it can be moved, either to
the floor or onto another clear block.

A language for describing the states and actions of bw
n is LBW, where LBW =

〈C, ∅, PS ∪ PA, d〉, PS = {on, on fl, cl}, PA = {mv, mv fl} and C = {a, b, c, . . .}
such that |C| = n. The arity of the predicate symbols are: d(on) = 2, d(on fl) =
1, d(cl) = 1, d(mv) = 2 and d(mv fl) = 1.

Background Knowledge. As mentioned above, the language L contains pred-
icates for background knowledge, PB, in addition to predicates for describing
states, PS , and actions, PA. A background theory, let us call it B, containing
definitions for these predicates is provided by the user of the system. The use of
background knowledge is a feature of many ILP and RRL systems, and providing
a “good” theory is often the key to solving a task effectively.

Example 2. A useful relation in blocks world is above(X, Y), which is true when-
ever there is a sequence of blocks leading from X down to Y . A recursive
definition for above(X, Y) is:

above(X, Y) ← on(X, Y)
above(X, Y) ← on(X, Z), above(Z, Y)

Let us extend the language for blocks world so that LBW =〈C, ∅,PS ∪ PA ∪ PB, d〉
where PB = {above} and d(above) = 2.

The Representation of Inputs. An input to the system describes the current
state of the environment and the potential for action within it. More specifically,
it is a pair (s, A(s)) where s ∈ S is the current state and A(s) is the set of
admissible actions for s. The state, s, and the set of admissible actions, A(s),
are each represented by an Herbrand interpretation—a set of ground atoms (i.e.
atoms that do not any contain variables) which are true—over the language L.

A LCS Approach to Relational Reinforcement Learning 173

a

b e

d

c

s = {cl(a), on(a, b), on fl(b), cl(c), on(c, d), on(d, e), on fl(e)}
A(s) = {mv fl(a), mv(a, c), mv fl(c), mv(c, a)}

Fig. 2. An hypothetical system input

Example 3. Figure 2 shows a diagram and representation of an hypothetical in-
put (s, A(s)) from bw

5 under the language LBW.

The Representation of Rules. Rules in Foxcs contain a logical part Φ, which
replaces the bit-string action and condition of their counterparts in Xcs. Apart
from this change, all other parameters and estimates associated with rules in
Xcs are retained by Foxcs and function as they do in Xcs.

The logical part of the rule, Φ, is a definite clause over the language L. The
definite clauses have the form: ϕ0 ← ϕ1, . . . , ϕn where each ϕi is an atom. Each
atom, ϕi, has the form ρ(τ1, . . . , τd(ρ)), where ρ ∈ P , each τi is either a constant
from C or a variable, and d(ρ) is the arity of ρ. If d(ρ) = 0 then ρ is a proposition
and the bracketed list of arguments is omitted. The head of the rule, ϕ0, can be
thought of as the rule’s action and only contains predicates from PA. The rule
body, ϕ1, . . . , ϕn, can be thought of as the rule’s condition and only contains
predicates from PS ∪ PB.

Example 4. The logical form of three rules under the language LBW are:

Φrl1 : mv(A, B) ← cl(A), cl(B), on(B, C), on fl(C)
Φrl2 : mv(A, B) ← cl(A), cl(B)
Φrl3 : mv fl(A) ← cl(A), above(A, B)

These three rules are illustrated in Fig. 3.

Note that rules in Foxcs can generalise over actions as well as states, which ne-
cessitates a couple of minor changes to the Xcs framework. First, as described in
Sect. 2.2, it is convenient to match rules against (s, a) pairs in order to determine
which actions the rule advocates. Second, the system’s match set is partitioned
into non-disjoint subsets, one for each a ∈ A(s) where s is the current state.
The subsets are non-disjoint because a single rule may advocate multiple ac-
tions; note that any such rule will contribute to the prediction calculation of
each action that it advocates.

174 D. Mellor

B

C

A BA B

A

rl1 rl2 rl3

Fig. 3. An illustration of three rules, rl1, rl2 and rl3. A serrated edge signifies that the
block rests either on an arbitrarily high stack of blocks or, in some cases, on the floor.

Declaring the Rule Language. Each environment requires its own specific
language L; thus Foxcs, like many ILP systems, supports a language declara-
tion command that enables the user to define L. The user defines the predicate
symbols belonging to P , and for each r ∈ P specifies:

– Whether r belongs to PA, PS or PB
– The minimum and maximum number of atoms allowed in a single rule that

are based on r

– Whether an atom based on r may be negated or not
– The type of each argument of r

– Modes for each argument of r; such as whether the argument may be a
constant or a free, existing or anonymous variable.

When the system creates and modifies rules through covering and mutation,
it consults these declarations in order to determine how atoms may be added,
modified, or deleted. The use of type information and modes effectively reduces
the size of search space.

2.2 Matching

The matching operation in Foxcs works as follows: a rule rl with logical part Φ
successfully matches a ground state-action pair (s, a) if and only if Φ, s, and the
background theory B, together entail a. This leads to the following definition of
matching:

Definition 1. A given rule rl with logical part Φ matches a ground state-action
pair (s, a) under background theory B, if and only if:

Φ ∧ s ∧ B |= a (1)

A LCS Approach to Relational Reinforcement Learning 175

Example 5. Let us consider matching rl3 from Fig. 3 to the input (s, A(s)) illus-
trated in Fig. 2. The values of Φ, s and A(s) are reproduced here for convenience:

Φ = mv fl(A) ← cl(A), above(A, B)
s = {cl(a), on(a, b), on fl(b), cl(c), on(c, d), on(d, e), on fl(e)}

A(s) = {mv fl(a), mv(a, c), mv fl(c), mv(c, a)}

A separate matching operation is run for each (s, a) ∈ {s}×A(s) because match-
ing is defined for (s, a) pairs rather than (s, A(s)) pairs. In this example, rl3 will
be matched to four (s, a) pairs because |A(s)| = 4.

Before matching, the Prolog knowledge base is initialised with B. When
matching begins, the first step is to assert Φ and s to the knowledge base.
Next, a query is made for each of the actions, a1, . . . , a4, in turn. The queries
corresponding to a1 (?- mv fl(a)) and a3 (?- mv fl(c)) succeed, while the
queries for a2 (?- mv(a,c)) and a4 (?- mv(c,a)) fail; hence, rl3 matches (s, a1)
and (s, a3), but not (s, a2) and (s, a4). Note that the rule in this example has
generalised over ground actions.
Note that matching a logical formula is a more expensive operation than the
simple linear-time procedure used for matching a bit-string; this represents the
cost of increasing the expressive power of the rule language. Experiments have
shown that the overall system efficiency on some tasks, particularly ILP tasks,
can be significantly improved by associating a cache with each rule that records
the results of the rule’s previous matching operations (the cache size was 1000
for the experiments in this article).

2.3 Rule Discovery

Rule discovery in Foxcs consists of covering plus various mutation operations;
these operations have the same purpose as their counterparts in Xcs but have
been completely redefined for representation in first-order logic. Crossover was
not implemented because a recombination of the syntactic elements of a first-
order definite clause generally doesn’t produce a recombination effect at the
semantic level. New operations, described below, were developed for this ver-
sion of Foxcs; unlike the previous operations from [32], they are domain
independent.

The Covering Operation. The covering operation creates a rule that matches
a given state-action pair, (s, a). The covering algorithm firstly creates a new rule,
rl, and initialises its parameters (except for Φ) in the same way as Xcs. Next,
the logical part, Φ, is set to a clause derived from (s, a): ϕ0 ← ϕ1, . . . , ϕn

where ϕ0 = a and ϕ1, . . . , ϕn is the clause containing all the facts in s. At this
stage the rule does not generalise because (s, a) is ground, thus the next step
is to generalise the rule by creating and applying an inverse substitution that
replaces some or all of the constants with variables. Lastly, rl is inserted in the
population where deletion may occur if the number of rules exceeds the user set
parameter, N .

176 D. Mellor

The Mutation Operations. Exploration of the rule space in Foxcs is princi-
pally achieved by applying mutation operators, which perform a role analogous
to refinement in ILP systems. The mutations operations can be characterised
along two dimensions. First, they are either generalising or specialising opera-
tions. Second, they operate at different levels: either the level of the atoms in
the rule or the level of the arguments to the atoms. In addition to the mutation
operations, Foxcs also employs a reproduction operation that copies the rule
but does not mutate it.

The operations are described below:

Delete atom (del, generalises.). An atom from the body of the rule is ran-
domly selected and deleted.

Constant to variable (c2v, generalises.). Each occurrence of a constant c is
replaced with a variable v. The operation first randomly selects the constant
c from the set of constants occurring in the rule. It then selects the variable
v from the union of the set of variables occurring in the rule and a new
variable not already occurring in the rule. An inverse substitution is then
performed which replaces c with v.

Variable to anonymous variable (v2a, generalises.). This operation
randomly selects and replaces a variable in the rule with the anonymous
variable.

Add atom (add, specialises.). An atom is generated and added to the body
of the rule. A predicate is selected from PS ∪ PB and its arguments filled in.
The arguments may be variables already occurring in the rule, new variables
or constants. If a constant is to be assigned to the argument of the predicate,
then it is generated from the current state s such that the new rule matches
(s, a) for some action a ∈ A(s).

Variable to constant (v2c, specialises.). Each occurrence of a variable v is
replaced with a constant c. The operation first randomly selects the variable v
from the set of variables occurring in the rule. It then finds a set C containing
constants which are candidates for replacement. Each constant c′ ∈ C is such
that the rule j matches (s, a) for the current state s and for some action
a ∈ A(s), where j is the new rule is obtained by replacing each occurrence
of v with c′. The constant c is then selected at random from C.

Anonymous variable to variable (a2v, specialises.). An anonymous vari-
able is replaced with a variable, v. The variable v is randomly selected from
a set of candidates that include all the variables already occurring in the
rule and a new free variable.

Reproduction (rep.). Increments the numerosity of the parent rule. The pur-
pose of this operation to encourage the most highly fit rules to dominate the
population.

These descriptions have been simplified by ignoring several factors: the min-
imum and maximum number of atoms, types, modes and potential failure of
the operation (for e.g., the c2v operation is invoked on a rule containing no
constants).

When mutation is triggered the system randomly selects one of the above
seven operations to apply. Each operation, i∈ {del,c2v,v2a,add,v2c,a2v,rep},

A LCS Approach to Relational Reinforcement Learning 177

is associated with a weight µi, and its selection probability is proportional to
its relative weight, µi�

j µj
. If the operation fails to produce offspring then an-

other randomly selected operation is applied, and so on, until one succeeds. The
weighting scheme allows the search to be biased in favour of some operations over
others. For example, the search can be biased in favour of the general-to-specific
direction by setting µadd > µdel.

Subsumption Deletion. The subsumption deletion technique encourages an
Xcs rule-base to converge to a population of maximally general rules; if a rule
is sufficiently accurate and experienced, then it may subsume other rules which
are specialisations of it. Subsumption deletion may occur in two places: in GA
subsumption it happens following a call to the GA and before insertion of the
new rule into the population, and in action set subsumption it is applied directly
after the action set is updated. Subsumption deletion requires two rules to be
compared for generality: for GA subsumption the relative generality of the parent
and child rules can be determined in constant time from knowing which mutation
operation was invoked; while for action set subsumption the relative generality
of the two rules is tested using θ-subsumption [37]. Ideally, there is an efficiency
gain associated with the use subsumption deletion; however, in Foxcs this is
potentially offset by the time cost of running θ-subsumption. Experiments have
shown that in practice there is a significant improvement in the efficiency of
Foxcs when using subsumption deletion.

3 Evaluation

In this section, Foxcs is empirically evaluated in a number of experiments. The
first experiment (Sect. 3.1) seeks to verify that Foxcs’s novel inductive mecha-
nism, which synthesises evolutionary computation and refinement operators in
a unique way, performs effectively. This was achieved by benchmarking Foxcs

against several algorithms specialised for induction over first-order logic, ILP
algorithms. The second experiment (Sect. 3.2) assesses the system on two RRL
benchmarking tasks from the bw

n environment. The final experiment (Sect. 3.3)
aims at demonstrating the power Foxcs’s rule language for expressing general-
isations: its ability to represent policies in bw

n environments that are indepen-
dent of n, the number of blocks in the environment.

3.1 Comparison to ILP Algorithms

In this section, Foxcs is compared to several well known ILP algorithms. ILP
tasks are essentially classification tasks and it has been shown that Xcs is com-
petitive with other machine learning algorithms at classification. For instance,
[1] compared Xcs to six algorithms (each belonging to different a methodological
paradigm) on 15 classification tasks and found that it was not significantly out-
performed by any of the algorithms in relation to its predicative accuracy; and
[7] has also obtained similar results. We are therefore interested to determine
whether Foxcs inherits Xcs’s ability at classification and performs at a level
comparable with existing ILP algorithms.

178 D. Mellor

Setup. The experiment compared Foxcs to several ILP algorithms and sys-
tems. Four well-known ILP algorithms were selected, Foil [38], Progol [35],
Icl [15] and Tilde [4]. The first three systems are rule-based, while Tilde uses a
tree-based representation. A fifth system containing an evolutionary component,
Ecl [17], was also selected; it employs a memetic algorithm that hybridises evo-
lutionary and ILP search heuristics. These algorithms are all supervised learning
algorithms since—as far as the author is aware—Foxcs is the first reinforcement
learning system to be applied to ILP tasks.

The following three benchmarking data sets were used:

Mutagenesis [43]. The aim is to predict the mutagenic activity of nitroaromatic
compounds. In these experiments the 188 molecule “regression friendly” sub-
set was used. There are two different levels of description for the molecules.
The first level, NS+S1, primarily contains low level structural descriptions of
the molecules in terms of their constituent atoms and bonds. The second level,
NS+S2, contains additional information about higher level sub-molecular
structures. The second level is a superset of the first and generally allows an
increase in predictive accuracy to be attained.

Biodegradability [5]. This data set contains molecules that must be classified
as either resistant or degradable from their structural descriptions (which are
very similar to those in the Mutagenesis data set) and molecular weights.
Several levels of description for the molecules are given in [5]; the Global+R
level is used here.

Traffic [22]. The aim is to predict critical road sections responsible for acci-
dents and congestion given traffic sensor readings and road geometry.

All results for the Foxcs system were obtained under the following settings:
N = 1000, ε = 10%, α = 0.1, β = 0.1, ε0 = 0.01, ν = 5, θga = 50, θsub = 20,
θdel = 20 and δ = 0.1 (these parameters are described in [12]). The mutation
parameters were: µrep = 20, µadd = 60, µdel = 20, and µi = 0 for all i ∈
{c2v,v2a,v2c,a2v}. Tournament selection was used with τ = 0.4. The learning
rate was annealed and both GA and action set subsumption were used. The
system was trained for 100,000 steps, but rule discovery was switched off after
90,000 steps in order to reduce the disruptive effect of rules generated late in
training that have not had sufficient experience to be adequately evaluated (see
Fig. 4). Finally, the reward was 10 for a correct classification and −10 for an
incorrect classification.

Foxcs’s performance was a measure of its predictive accuracy (the percentage
of correct classifications made by the system on data withheld from it during
training). A typical procedure for measuring predictive accuracy is 10-fold cross-
validation; however, care must be taken when using this method with Foxcs

because the system is not deterministic and produces different rules when an
experiment is re-run, which potentially reduces the reproducibility of a result
even when the same data folds are used. All predictive accuracies reported for
Foxcs are the mean over ten repetitions of the 10-fold cross validation procedure.
Such a measure will minimise the effects of non-determinism and ensure that
results are reproducible.

A LCS Approach to Relational Reinforcement Learning 179

0 20 40 60 80 100
75

76

77

78

79

80

81

82

83

84

85

Training Episode (x1000)

A
cc

ur
ac

y
(%

)

System A
System B

Fig. 4. This graph of Foxcs’s performance on the Mutagenesis NS+S1 data set is
indicative of the performance improvement gained by switching off rule discovery prior
to the completion of training. After 90,000 training episodes rule discovery is switched
off for system A but left on for system B. Comparing the performance of the two systems
after this point illustrates the negative effect which is exerted by freshly evolved rules.

Results. Table 1 compares the predictive accuracy of Foxcs to that of the ILP
systems on the Mutagenesis, Biodegradability, and Traffic data sets. The results
were taken from the following sources. For the Mutagenesis data set: [43] for
Progol, [4] for Tilde and Foil,2 [46] for Icl and [16] for Ecl; for Biodegrad-
ability: [5] for Tilde and Icl, and [16] for Ecl; and for Traffic: [22] for all
systems except Ecl, which is [16]. All predictive accuracies have been measured
using 10-fold cross validation (note that, as mentioned above, the predictive ac-
curacy for Foxcs is the mean over ten repetitions of 10-fold cross validation).
The folds are provided with the Mutagenesis and Biodegradability data sets but
are generated independently for the Traffic data. For the Biodegradability data,
five different 10-fold partitions are provided and the final result is the mean
performance over the five 10-fold partitions. For consistency, all results have
been rounded to the lowest precision occurring in the sources (i.e. whole num-
bers). Where a source provides multiple results due to different settings of the
algorithm, the best results that were obtained are given.

From the table it can be seen that Foxcs generally performs at a level compa-
rable to the other systems; in only one case is Foxcs significantly outperformed
(by Ecl on Mutagenesis (NS+S2)). This result is compelling because Foxcs is
at a relative disadvantage: feedback under reinforcement learning is less informa-
tive than under supervised learning. This finding confirms that Foxcs retains

2 Note that [4] is a secondary source for Foil on the Mutagenesis data set; this is be-
cause the primary source [41] has been withdrawn and its replacement [42] reassesses
Progol but unfortunately does not replicate the experiments for Foil.

180 D. Mellor

Table 1. Comparison between the predictive accuracy of Foxcs and selected algo-
rithms on the ILP data sets. The standard deviations, where available, are given in
parentheses. An * (**) indicates that the value is significantly different from the corre-
sponding value obtained by Foxcs according to an unpaired t-test (assuming unequal
variance) with confidence level 95% (99%) (note that a significance test could not be
run for the cases where no standard deviation was reported).

Algorithm Predictive Accuracy (%)

Mute (NS+S1) Mute (NS+S2) Biodegradability Traffic

Foxcs 84 (3) 87 (2) 74 (2) 93 (1)
Ecl – 90 (1)** 74 (4) 93 (2)
Foil 83 82 – –
Icl 87 (10) 88 (8) 75 (1) 93 (4)
Progol 82 (3) 88 (2) – 94 (3)
Tilde 85 86 74 (1) 94 (4)

Xcs’s ability at classification; thus, we conclude that Foxcs’s novel inductive
mechanism performs effectively.

3.2 Relational Reinforcement Learning

The aim of these experiments is to demonstrate that Foxcs can achieve optimal
or near-optimal behaviour on RRL tasks. We also wish to compare the perfor-
mance of Foxcs to other RRL systems. Note that the number of comparison
systems is more limited here than in the previous section; this is a consequence
of the fact that RRL is a more recent development than ILP.

Setup. For these experiments, Foxcs was benchmarked on two bw
n tasks,

stack and onab [21]. The goal of the stack task is arrange all the blocks into
a single stack; the order of the blocks in the stack is unimportant. An optimal
policy for this task is to move any clear block onto the highest block. In the
onab task, two blocks are designated A and B respectively; the goal is to place
A directly on B. An optimal policy is to first move the blocks above A and B
to the floor and then to move A onto B.

Foxcs was run 10 separate times on both the stack and onab tasks. Each
run interleaved training and evaluation: after every 50 training episodes, the
system was evaluated on 100 test episodes during which all learning behaviour
was switched off. Training episodes began with the blocks in randomly generated
positions (positions were generated according to a uniform distribution [39]; but
positions corresponding to goal states were discarded) and continued until either
a goal state was reached or an upper limit on the number of time steps (set to
100) was exceeded. For test episodes, 100 start starts were randomly generated
and used for all test episodes in a single run. The performance measure was the
percentage of the 100 test episodes that were completed in the optimal number
of steps and all results were averaged over the 10 separate runs.

A LCS Approach to Relational Reinforcement Learning 181

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Stack (BW4)

Episode

A
cc

ur
ac

y

0 5,000 10,000 15,000 20,000
0

0.2

0.4

0.6

0.8

1
Stack (BW5)

Episode

A
cc

ur
ac

y

0 5,000 10,000 15,000 20,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Stack (BW6)

Episode

A
cc

ur
ac

y

0 5,000 10,000 15,000 20,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Stack (BW7)

Episode

A
cc

ur
ac

y

Fig. 5. The performance of Foxcs on the stack task in bw
n|n = 4, 5, 6, 7 blocks. The

graphs show the mean accuracy (solid line) and standard deviation (dotted line) over
ten runs. Accuracy is the percentage of episodes completed in the optimal number of
steps. The point at which evolution was switched off is indicated by the vertical dashed
line.

0 10,000 20,000 30,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Onab (BW4)

Episode

A
cc

ur
ac

y

0 10,000 20,000 30,000 40,000 50,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Onab (BW5)

Episode

A
cc

ur
ac

y

0 10,000 20,000 30,000 40,000 50,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Onab (BW6)

Episode

A
cc

ur
ac

y

0 10,000 20,000 30,000 40,000 50,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Onab (BW7)

Episode

A
cc

ur
ac

y

Fig. 6. The performance of Foxcs on the onab task in bw
n|n = 4, 5, 6, 7 blocks

182 D. Mellor

Results for the Foxcs system were obtained under the following settings.
The system parameters were: N = 1000, ε = 10%, α = 0.1, β = 0.1, ε0 =
0.001, ν = 5, θga = 50, θsub = 100, θdel = 20, and δ = 0.1. The mutation
parameters were: µrep = 25, µadd = 50, µdel = 25, and µi = 0 for all i ∈
{c2v,v2a,v2c,a2v}. Proportional selection was used, the learning rate was
annealed and GA subsumption was used but not action set subsumption. A
reward of −1 was given on each time step. The rule language was based on LBW.

Covering was not used to generate the initial population. The tasks were
“too easy” under covering because the operation alone produces rules that are
sufficient to form an optimal policy without any need for mutation. Thus, the rule
base was given an initial population consisting of: mv fl(A) ← cl(A), on(A, B)
and mv(A, B) ← cl(A), cl(B). These two rules were selected because between
them they cover the entire state-action space of blocks world.

Results. Figures 5 and 6 show the performance of Foxcs on the stack and
onab tasks respectively in bw

n|n = 4, 5, 6, 7. After evolution was switched off,
the performance of Foxcs on the stack task was optimal in bw

4 and bw
5 and

near-optimal in bw
6 and bw

7. Here, near-optimal means that the final accuracy
is ≥ 98%. For onab it was optimal in bw

4 and near-optimal in bw
5 but not for

bw
6 and bw

7.
These experiments are most directly comparable to those reported by [21,

section 6.3.1] for Q-rrl and by [20, section 4.1] for Rrl-tg. In those experi-
ments they addressed both the stack and onab tasks in bw

n|n = 3, 4, 5. In terms
of the accuracy level attained, Foxcs performed at least as well as Q-rrl and
Rrl-tg, except for the onab task in bw

5, where Rrl-tg was able to achieve op-
timal performance. However, Q-rrl and Rrl-tg did require significantly fewer
training episodes to converge; perhaps because LCS systems train more slowly
than other reinforcement learning systems due to the stochastic nature of the
evolutionary component.

3.3 Learning Scalable Policies

Note that the performance of Foxcs in bw
n in the previous section was affected

by n. Each additional block tends to decrease i) the maximum predictive accu-
racy obtained, and to increase ii) the number of training episodes required to

Table 2. Mean execution time (and standard deviation) over 10 runs of 40,000 episodes
on the stack and onab tasks in bw

n|n = 4, 5, 6, 7. For each run, training was interleaved
with evaluation: 100 evaluation episodes were run after every 100 training episodes (all
start states were selected randomly as described in Sect. 3.2).

Task Execution Time (sec)

bw
4

bw
5

bw
6

bw
7

stack 1,578 (383) 7,136 (4,036) 17,336 (1,529) 35,655 (7,946)
onab 7,165 (708) 19,852 (1,987) 42,684 (5,940) 79,450 (7,859)

A LCS Approach to Relational Reinforcement Learning 183

reach a certain level of performance, iii) the size of the population, and iv) the
average matching time per rule. Table 2 illustrates the net effect on execution
time: as n increases from 5 to 7, Foxcs’s execution time for bw

n is approxi-
mately double that for bw

n−1. These effects are not surprising since the size of
the state space of bw

n is greater than O(n!) ([39] gives a precise expression).
However, there is an approach, P-Learning [21], that avoids any extra time cost

as n increases. Under this approach, training is only performed under small values
of n, which minimises training times; importantly however, the resulting policies
scale up to arbitrary values of n without requiring additional retraining. The aim
of this section is to demonstrate that Foxcs, when combined with P-Learning, can
learn optimal policies that scale to arbitrary sized environments.

Setup. For these experiments, P-Foxcs, a version of Foxcs that incorporates
P-Learning (see Appendix A), was benchmarked on stack and onab. The system
used the parameters values given in the previous section; however, a number of
changes were made to the training and evaluation procedure as set out below.

First, the behavioural policy of the system depended on whether the system
was performing a training or evaluation episode. For training episodes, the policy
was determined by the primary population as usual. However, during evaluation
the behavioural policy was determined by the second population, which contains
the rules learnt through P-Learning. As usual, all learning was suspended when
the system was performing an evaluation episode.

Second, the number of blocks, n, was varied from episode to episode through-
out training in order to encourage the P-Learning component to learn policies
that were independent of n. Thus, the initial state of each training episode was
randomly selected from bw

n|n = 3, 4, 5. (In preliminary experiments, n was held
constant throughout training; unfortunately, this resulted in P-Learning policies
that were optimal with respect to bw

n only.) It is desirable, though, for the rules
in the primary population to actually be dependent on n. This was accomplished
by placing an additional atom, num blocks(n), into the state signal and adding
num blocks to PS .

Finally, n was also varied from episode to episode throughout evaluation.
Before each run, 100 states were randomly selected from bw

n|n = 3, 4, . . . , 16 to
be the start states for the test episodes; thus, P-Foxcs was tested on much larger
blocks world environments than it was trained on. Note that the P-Learning
component was not activated or evaluated until after a delay period (of 5,000 and
20,000 training episodes for stack and onab respectively) had elapsed; this delay
allowed time for the primary population to evolve so that system predictions
would be relatively stable by the time P-Learning commenced. After this point,
both populations were updated and evolved in parallel.

Results. Figure 7 shows the results of the experiment; by the end of train-
ing, the system was able to act optimally on stack and near-optimally on onab
(for onab the mean accuracy after evolution was switched off was ≥ 98.6%).
Recall that most evaluation episodes occurred in worlds containing many more
blocks than were present in training episodes; the results thus demonstrate that

184 D. Mellor

5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Stack (BW3 to BW16)

Episode

A
cc

ur
ac

y

20,000 25,000 30,000 35,000 40,000 45,000 50,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Onab (BW3 to BW16)

Episode

A
cc

ur
ac

y

Fig. 7. The performance of P-Foxcs on the stack and onab tasks. Graphs give per-
formance in terms of accuracy, the percentage of episodes completed in the optimal
number of steps; each plot is averaged over ten runs and the dashed line indicates the
point at which evolution was switched off.

P-Foxcs had learnt genuinely scalable policies which could handle blocks worlds
of effectively arbitrary size.

The problem of learning scalable policies for stack and onab has been previously
addressed in [21,20] using the P-Learning technique. In related experiments, [18]
trained severalRRLsystemson the stack andonab tasks inbw

n|n = 3, 4, 5without
using the P-Learning extension and then evaluated them in bw

n|n = 3, 4, . . . , 10.
However, the systems were also allowed to learn from samples of optimal trajec-
tories in bw

10; so testing did not explicitly show that the policies learnt scaled to
environments containingmore blocks thanpreviously experienced during training.

Table 3 summarises the results obtained by [21,20,18]. As can be observed
in the table, P-Foxcs achieved accuracy results as good as or better than these
previous systems. Also shown in the table are the number of episodes used to
train the systems. Although all other systems except for Rrl-tg

† trained on

Table 3. The accuracy of RRL systems on the bw
n tasks stack and onab where n

varied from episode to episode. Note that results were originally presented graphically,
therefore all accuracy values (less than 100%) are approximate and should be considered
as indicative rather than absolute. Also given are the number of training episodes taken.
Rrl-tg

† used P-Learning; Rrl-tg did not. Source for P-rrl is [21], for Rrl-tg
† [20],

and for all other comparison systems [18].

System Accuracy (%) Training Episodes (×103)

stack onab stack onab

Foxcs 100% ∼ 98% 20 50
P-rrl 100% ∼ 90% 0.045 0.045
Rrl-tg

† 100% ∼ 92% 30 30
Rrl-tg ∼ 88% ∼ 92% 0.5 12.5
Rrl-rib ∼ 98% ∼ 90% 0.5 2.5
Rrl-kbr 100% ∼ 98% 0.5 2.5
Trendi 100% ∼ 99% 0.5 2.5

A LCS Approach to Relational Reinforcement Learning 185

significantly less episodes than P-Foxcs, the cost of training is irrelevant when
scaling up as an acceptable training time can be produced straightforwardly by
selecting a small environment to train in.

It is important to emphasize that the systems evaluated in [18] have not learnt
policies that are genuinely independent of the number of blocks—if evaluated
in bw

n|n > 10, their performance would most likely degrade. Only P-rrl and
Rrl-tg are able to express genuinely scalable policies (of course they require
P-Learning to actually learn them). On the other hand, Rrl-rib and Rrl-kbr

do not have sufficient expressive capability to be able to represent the scalable
policies because they do not support variables. The Trendi system, as a hybrid
of Rrl-rib and Rrl-tg, would also have problems expressing scalable policies.
Thus, apart from P-Foxcs, only P-rrl and Rrl-tg have the potential to learn
policies that are genuinely independent of the number of blocks.

4 Conclusion
This article presents a new RRL system, Foxcs, a derivative of the learning clas-
sifier system Xcs. The rules learnt by Foxcs are definite clauses over first-order
logic, necessitating modifications to support matching, covering, mutation and
several other functions. Unlike many RRL systems, the LCS approach adopted
by Foxcs is general, model-free and “tabula rasa”; general in the sense that the
problem framework, Markov decision processes, is not restricted and “tabula
rasa” in the sense that the initial policy can be left unspecified. An additional
advantage is that the rules produced are relatively comprehensible.

Experiments verified that the predictive accuracy of Foxcs is comparable
to that of several well-known ILP algorithms, thus demonstrating the efficacy
of its novel inductive mechanism. Further experiments benchmarked Foxcs on
standard RRL tasks; it was able to learn optimal or near-optimal policies. A final
experiment highlighted a significant advantage of the use of variables in Foxcs’s
rule language: in contrast to most of the comparison RRL systems, P-Foxcs—a
version of Foxcs extended with P-Learning—learnt genuinely scalable policies
(policies which are independent of the size of the environment). In conclusion,
these findings establish Foxcs as a promising framework for RRL.

Acknowledgements. The author would like to thank Sašo Džeroski for kindly
supplying the Biodegradability data set and Federico Divina and Martin Molina
for their assistance in obtaining the Traffic data set.

References

1. Bernadó, E., Llorà, X., Garrel, J.M.: XCS and GALE: A comparative study of
two learning classifier systems on data mining. In: Lanzi, P.L., Stolzmann, W.,
Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 115–132. Springer,
Heidelberg (2002)

2. Bernadó-Mansilla, E., Garrell-Guiu, J.M.: Accuracy-based learning classifier sys-
tems: Models, analysis and applications to classification tasks. Evolutionary Com-
putation 11(3), 209–238 (2003)

186 D. Mellor

3. Beyer, H.-G., O’Reilly, U.-M. (eds.): Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2005. ACM Press, New York (2005)

4. Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees.
Artificial Intelligence 101(1–2), 285–297 (1998)

5. Blockeel, H., Džeroski, S., Kompare, B., Kramer, S., Pfahringer, B., Laer, W.V.:
Experiments in predicting biodegradability. Applied Artificial Intelligence 18(2),
157–181 (2004)

6. Bull, L., O’Hara, T.: Accuracy-based neuro and neuro-fuzzy classifier systems. In:
Langdon, et al. (eds.) [28], pp. 905–911

7. Butz, M.V.: Rule-based Evolutionary Online Learning Systems: Learning Bounds,
Classification, and Prediction. PhD thesis, University of Illinois at Urbana-
Champaign, 104 S. Mathews Avenue, Urbana, IL 61801, U.S.A (2004)

8. Martin, V.: Kernel-based, ellipsoidal conditions in the real-valued XCS classifier
system. In: Beyer, O’Reilly (eds.) [3], pp. 1835–1842

9. Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.W.: Toward a theory of generaliza-
tion and learning in XCS. IEEE Transactions on Evolutionary Computation 8(1),
28–46 (2004)

10. Butz, M.V., Pelikan, M.: Analyzing the evolutionary pressures in XCS. In: Spector,
et al. (eds.) [40], pp. 935–942

11. Butz, M.V., Sastry, K., Goldberg, D.E.: Strong, stable, and reliable fitness pres-
sure in XCS due to tournament selection. Genetic Programming and Evolvable
Machines 6(1), 53–77 (2005)

12. Butz, M.V., Wilson, S.W.: An algorithmic description of XCS. In: Lanzi, P.L.,
Stolzmann, W., Wilson, S.W. (eds.) Advances in Learning Classifier Systems. Third
International Workshop (IWLCS-2000), pp. 253–272. Springer, Heidelberg (2001)

13. Casillas, J., Carse, B., Bull, L.: Fuzzy XCS: an accuracy-based fuzzy classifier
system. In: Proceedings of the XII Congreso Espanol sobre Tecnologia y Logica
Fuzzy (ESTYLF 2004), pp. 369–376 (2004)

14. Cole, J., Lloyd, J., Ng, K.S.: Symbolic learning for adaptive agents. In: Proceed-
ings of the Annual Partner Conference, Smart Internet Technology Cooperative
Research Centre (2003), http://users.rsise.anu.edu.au/∼jwl/crc paper.pdf

15. Raedt, L.D., Laer, W.V.: Inductive constraint logic. In: Jantke, K.P., Shinohara, T.,
Zeugmann,T.(eds.)ALT1995.LNCS,vol.997,pp.80–94.Springer,Heidelberg(1995)

16. Divina, F.: Hybrid Genetic Relational Search for Inductive Learning. PhD thesis,
Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands
(2004)

17. Divina, F., Marchiori, E.: Evolutionary concept learning. In: Langdon, et al. (eds.)
[28], pp. 343–350

18. Driessens, K., Džeroski, S.: Combining model-based and instance-based learning
for first order regression. In: Raedt, L.D., Wrobel, S. (eds.) Proceedings of the
Twenty-Second International Conference on Machine Learning (ICML 2005). ACM
International Conference Proceeding Series, vol. 119, pp. 193–200. ACM Press, New
York (2005)

19. Driessens, K., Ramon, J.: Relational instance based regression for relational rein-
forcement learning. In: Fawcett, T., Mishra, N. (eds.) Machine Learning, Proceed-
ings of the Twentieth International Conference (ICML 2003), pp. 123–130. AAAI
Press, Menlo Park (2003)

20. Driessens, K., Ramon, J., Blockeel, H.: Speeding up relational reinforcement learn-
ing through the use of an incremental first order decision tree learner. In: Raedt,
L.D., Flach, P. (eds.) Proceedings of the 12th European Conference on Machine
Learning, pp. 97–108. Springer, Heidelberg (2001)

http://users.rsise.anu.edu.au/~jwl/crc_paper.pdf

A LCS Approach to Relational Reinforcement Learning 187

21. Džeroski, S., Raedt, L.D., Driessens, K.: Relational reinforcement learning. Ma-
chine Learning 43(1–2), 7–52 (2001)

22. Džeroski, S., Jacobs, N., Molina, M., Moure, C., Muggleton, S., van Laer, W.: De-
tecting traffic problems with ILP. In: Page, D.L. (ed.) ILP 1998. LNCS, vol. 1446,
pp. 281–290. Springer, Heidelberg (1998)

23. Gärtner, T., Driessens, K., Ramon, J.: Graph kernels and Gaussian processes for
relational reinforcement learning. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003.
LNCS (LNAI), vol. 2835, pp. 146–163. Springer, Heidelberg (2003)

24. Genesereth, M.R., Nilsson, N.J.: Logical Foundations of Artificial Intelligence. Mor-
gan Kaufmann, San Francisco (1987)

25. Holland, J.H.: Adaptation. In: Rosen, R., Snell, F.M. (eds.) Progress in Theoretical
Biology, vol. 4. Plenum, NY (1976)

26. Kovacs, T.: Towards a theory of strong overgeneral classifiers. In: Martin, W.,
Spears, W. (eds.) Foundations of Genetic Algorithms 6, pp. 165–184. Morgan Kauf-
mann, San Francisco (2001)

27. Kovacs, T.: A Comparison of Strength and Accuracy-Based Fitness in Learning
Classifier Systems. PhD thesis, School of Computer Science, University of Birm-
ingham, UK (2002)

28. Langdon, W.B., Cantú-Paz, E., Mathias, K.E., Roy, R., Davis, D., Poli, R., Bal-
akrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A.,
Schultz, A.C., Miller, J.F., Burke, E.K., Jonoska, N.: GECCO 2002: Proceedings
of the Genetic and Evolutionary Computation Conference, 9-13 July 2002. Morgan
Kaufmann, San Francisco (2002)

29. Lanzi, P.L.: Extending the representation of classifer conditions, part II: From
messy codings to S-expressions. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon,
M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 1999), pp. 345–352. Morgan
Kaufmann, San Francisco (1999)

30. Lanzi, P.L.: Mining interesting knowledge from data with the XCS classifier system.
In: Spector, et al. (eds.) [40], pp. 958–965

31. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: XCS with computed
prediction in multistep environments. In: Beyer, O’Reilly (eds.) [3], pp. 1859–1866

32. Mellor, D.: A first order logic classifier system. In: Beyer, O’Reilly (eds.) [3], pp.
1819–1826

33. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
34. Muggleton, S.: Inductive Logic Programming. In: The MIT Encyclopedia of the

Cognitive Sciences (MITECS). Academic Press, London (1992)
35. Muggleton, S.: Inverse entailment and Progol. New Generation Computing, Special

issue on Inductive Logic Programming 13(3–4), 245–286 (1995)
36. Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming.

LNCS, vol. 1228. Springer, Heidelberg (1997)
37. Plotkin, G.D.: Automatic Methods of Inductive Inference. PhD thesis, Edinburgh

University (1971)
38. Quinlan, J.R.: Learning logical definition from relations. Machine Learning 5(3),

239–266 (1990)
39. Slaney, J., Thiébaux, S.: Blocks World revisited. Artificial Intelligence 125, 119–153

(2001)
40. Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M.,

Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.): Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO 2001), July 7-11
2001. Morgan Kaufmann, San Francisco (2001)

188 D. Mellor

41. Srinivasan, A., Muggleton, S., De King, R.: Comparing the use of background
knowledge by inductive logic programming systems. In: Raedt, L.D. (ed.) Proceed-
ings of the Fifth International Inductive Logic Programming Workshop, Katholieke
Universteit, Leuven (1995); Withdrawn from publication and replaced by [42]

42. Srinivasan, A., King, R.D., Muggleton, S.: The role of background knowledge: using
a problem from chemistry to examine the performance of an ILP program. Tech-
nical Report PRG-TR-08-99, Oxford University Computing Laboratory, Oxford,
UK (1999)

43. Srinivasan, A., Muggleton, S., Sternberg, M.J.E., King, R.D.: Theories for mu-
tagenicity: A study in first-order and feature-based induction. Artificial Intelli-
gence 85(1-2), 277–299 (1996)

44. Stone, C., Bull, L.: For real! XCS with continuous-valued inputs. Evolutionary
Computation 11(3), 299–336 (2003)

45. Tadepalli, P., Givan, R., Driessens, K.: Relational reinforcement learning: an
overview. In: Tadepalli, P., Givan, R., Driessens, K. (eds.) Proceedings of the
ICML2004 Workshop on Relational Reinforcement Learning, pp. 1–9 (2004),
http://eecs.oregonstate.edu/research/rrl/index.html

46. Van Laer, W.: From Propositional to First Order Logic in Machine Learning and
Data Mining. PhD thesis, Katholieke Universiteit Leuven, Belgium (2002)

47. Van Laer, W., De Raedt, L.: How to upgrade propositional learners to first order
logic: A case study. In: Paliouras, G., Karkaletsis, V., Spyropoulos, C.D. (eds.)
ACAI 1999. LNCS (LNAI), vol. 2049, pp. 102–126. Springer, Heidelberg (2001)

48. van Otterlo, M.: A survey of reinforcement learning in relational domains. Technical
Report TR-CTIT-05-31, University of Twente, The Netherlands (2005)

49. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3(2),
149–175 (1995)

50. Wilson, S.W.: Generalization in the XCS classifier system. In: Koza, J.R., Banzhaf,
W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg,
D.E., Iba, H., Riolo, R. (eds.) Genetic Programming 1998: Proceedings of the
Third Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, pp.
665–674. Morgan Kaufmann, San Francisco (1998)

51. Wilson, S.W.: Get real! XCS with continuous-valued inputs. In: Lanzi, P.L., Stolz-
mann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 209–222.
Springer, Heidelberg (2000)

A P-Learning

This appendix outlines P-Learning [21] and its implementation in P-Foxcs. In
brief, a P-Learning system aims to learn a function P : S × A → {0, 1} such
that (s, a) �→ 1 if a is the optimal action to take in state s, otherwise (s, a) �→ 0.
Because the optimal action is not directly known by the P-Learning agent, it
is instead estimated by finding the action with the maximum estimated long
term accumulated reward. In P-Foxcs, P-Learning involves maintaining two
separate populations of rules. The first population functions as usual; that is,
it is used to estimate the long term accumulated reward associated with (s, a)
pairs. The second population, on the other hand, is used to estimate P . Rules
from the second population are updated and evolved in parallel to and in an
analogous fashion to rules from the primary population; the principal difference
being that when the rules are updated the training signal originates from the
first population instead of the environment.

http://eecs.oregonstate.edu/research/rrl/index.html

Linkage Learning, Rule Representation, and the
χ-Ary Extended Compact Classifier System

Xavier Llorà1, Kumara Sastry2,�, Cláudio F. Lima3,
Fernando G. Lobo3, and David E. Goldberg2

1 National Center for Supercomputer Applications, University of Illinois at
Urbana-Champaign, IL 61801, USA

2 Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign,
IL 61801, USA

3 Informatics Laboratory (UALG-ILAB), Dept. of Electronics and Computer Science
Engineering, University of Algarve, Campus de Gambelas, 8000-117 Faro, Portugal

Abstract. This paper reviews a competent Pittsburgh LCS that au-
tomatically mines important substructures of the underlying problems
and takes problems that were intractable with first-generation Pittsburgh
LCS and renders them tractable. Specifically, we propose a χ-ary ex-
tended compact classifier system (χeCCS) which uses (1) a competent
genetic algorithm (GA) in the form of χ-ary extended compact genetic
algorithm, and (2) a niching method in the form restricted tournament
replacement, to evolve a set of maximally accurate and maximally gen-
eral rules. Besides showing that linkage exist on the multiplexer problem,
and that χeCCS scales exponentially with the number of address bits
(building block size) and quadratically with the problem size, this paper
also explores non-traditional rule encodings. Gene expression encodings,
such as the Karva language, can also be used to build χeCCS probabilis-
tic models. However, results show that the traditional ternary encoding
0,1,# presents a better scalability than the gene expression inspired ones
for problems requiring binary conditions.

1 Introduction

One of the daunting challenges in genetics based machine learning (GBML) is the
principled integration of competent genetic algorithms (GAs) [1]—GAs that solve
boundedly difficult problems quickly, reliably, and accurately—for evolving maxi-
mally general, maximally accurate rules. Despite their demonstrated scalability—
on both problems that are difficult on a single as well as hierarchical level—limited
studies have used competent GAs in GBML [2,3]. Butz et al [2] studied techniques
to identify problem structures in XCS. In a subsequent study, Butz et al [3] inves-
tigated methods to identify and effectively process building blocks in XCS. Specifi-
cally, they used a two-level composed problem (n-parity m-multiplexer), and used
competent GAs to identify global and local structure. Due to the binary encod-
ing used, the low-level structure (parity) was successfully identified and processed,
but left the high-level structure (multiplexer) unidentified.
�Currently at Intel Corp.

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 189–205, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

190 X. Llorà et al.

Modeling on the evolution of estimation of distribution algorithms (EDAs)
[4], we approached the integration of competent GAs into the Pittsburgh LCS
in a principled manner by first considering a simplest EDA—compact genetic
algorithm [5]—and developed the compact classifier system (CCS) [6]. Our ini-
tial analysis with CCS showed that it is able to evolve maximally general and
maximally accurate rule sets while guaranteeing a compact representation of the
rule set space. However, the scalability analysis of CCS revealed that it requires
exponential number of function evaluations to fully solve the multiplexer prob-
lem. The exponential scalability is due two factors: (1) Attribute independence
assumption that leads CCS to require an exponentially large population size to
evolve some of the rules belonging to the optimal rule set, which strongly hints
to the presence of interactions among the decision variables, and (2) rule set
formation by multiple cGA runs, that is, CCS requires multiple cGA runs to
assemble a rule set that solves the problem. Assuming that the probability of
drawing a rule in a given cGA run is 1/ |[O]| (|[O]| the optimal rule set [7]), the
number of runs required to ensemble an rule set increases exponentially with the
number of rules in the optimal set [O].

In this paper, we remedy both drawbacks of CCS and propose a method that
not only discovers necessary substructures, but also evolves a set of maximally
general and maximally accurate rules simultaneously within the framework of
Pittsburgh LCS. Specifically, we propose a χ-ary extended compact classifier
system (χeCCS) which uses (1) a linkage-learning GA in the form of χ-ary ex-
tended compact genetic algorithm (χeCGA) [8,9], and (2) a niching method in
the form of restricted tournament replacement [10] to evolve a set of maximally
general and maximally accurate rule set. Confirming CCS results, χeCCS re-
sults show that linkage does exist in the multiplexer problem, which needs to
be discovered in order to evolve a rule set in tractable time. We show that in
accordance with existing population-sizing models for EDAs, the population size
required by χeCCS scales exponentially with the number of address bits (build-
ing block size) and linearly with the problem size (number of building blocks).
Additionally, the number of function evaluations required by χeCCs to success-
fully evolve an optimal rule set scales exponentially with the number of address
bits (building block size) and quadratically with the problem size, despite the
exponential growth in the size of the optimal rule set.

In a quest to push the design envelope, we also explore an alternative rule
encoding to the traditional ternary alphabet {0,1,#}. Recently, Wilson [11]
has introduced XCSF-GEP. The key modification introduced is the usage of rule
conditions á la gene expression programming (GEP) [12,13]. Wilson [11] explored
GEP encodings to facilitate the expression of arithmetic expressions. His elegant
solution allowed XCS to express a rich set of conditions, not possible otherwise.
We will follow Wilson’s approach, but we will only focus on traditional binary
rules—a more simple problem than the originally proposed by Wilson. In this
paper we also review the key elements used in XCSF-GEP: the Karva language
and its expression mechanism. The Karva encoding provides finite length and
finite arity genomes, whereas still can produce variable length rule conditions.

Linkage Learning, Rule Representation, and the χeCCS 191

Hence, we can use without modification the proposed χ-eCCS on individuals
where its genome follows the Karva encoding scheme. Results show that despite
being a feasible approach, the GEP-based encoding places a serious threat to
the scalability of χ-eCCS solving the multiplexer problem due to the population
sizes required to obtain accurate probabilistic models.

The rest of the paper is structured as follows. We introduce χeCCS in sec-
tion 2. In section 3, we summarize the initial analysis and results obtained using
χeCCS. Section 4 presents a quick overview of gene expression programming and
the Karva language, as well as the results and scalability analysis of χeCCS using
such encoding. Finally, we summarize the work done and present key conclusions
in section 5.

2 The χ-ary Extended Compact Classifier System

The χ-ary extended compact classifier system (χeCCS) relies on a χ-ary ex-
tended compact genetic algorithm (χeCGA) [8,9] to identify building blocks
among the rules. As in CCS, χeCCS uses a default rule for close-world assump-
tion, but represents the rules using a ternary encoding instead of the binary
one used in CCS. The use of a χ-ary approach is to focus the linkage learn-
ing between the conditions of the rules. Whereas, a binary version would be
misled and only group bits of a single condition together (low-level building
blocks) [3]. Another key element to the evolution of a set of rules is the abil-
ity to provide proper niching capabilities—as already pointed out elsewhere by
Bernadó-Mansilla et al. [14,15].

The χ-ary extended compact genetic algorithm (χeCGA) [8,9], is an contin-
uations of Harik’s binary eCGA [16]. Unlike the original eCGA, χeCGA can
handle fixed-length chromosomes composed of genes with arbitrary cardinalities
(denoted by χ). As in the original eCGA, χeCGA is based on a key idea that
the choice of a good probability distribution is equivalent to linkage learning.
The measure of a good distribution is quantified based on minimum descrip-
tion length(MDL) models. The key concept behind MDL models is that given
all things are equal, simpler distributions are better than the complex ones.
The MDL restriction penalizes both inaccurate and complex models, thereby
leading to an optimal probability distribution. The probability distribution used
in eCGA is a class of probability models known as marginal product models
(MPMs). MPMs are formed as a product of marginal distributions on a parti-
tion of the genes. MPMs also facilitate a direct linkage map with each partition
separating tightly linked genes.

The χeCCS can be algorithmically outlined as follows:

1. Initialize the population with random individuals.
2. Evaluate the fitness value of the individuals
3. Select good solutions by using s-wise tournament selection without replace-

ment [17].

192 X. Llorà et al.

4. Build the probabilistic model: In χeCGA, both the structure of the model as
well as the parameters of the models are searched. A greedy search is used
to search for the model of the selected individuals in the population.

5. Create new individuals by sampling the probabilistic model.
6. Evaluate the fitness value of all offspring
7. Replace the parental population (before selection) with the offspring pop-

ulation using restricted tournament replacement (RTR) [10]. We use RTR
in order to maintaining multiple maximally general and maximally accurate
rules as niches in the population.

8. Repeat steps 3–7 until some convergence criteria are met.

Three things need further explanation: (1) the fitness measure, (2) the identifi-
cation of MPM using MDL, and (3) the creation of a new population based on
MPM.

In order to promote maximally general and maximally accurate rules á la XCS
[18], χeCCS compute the accuracy (α) and the error (ε) of an individual [19]. In
a Pittsburgh-style classifier, the accuracy may be computed as the proportion of
overall examples correctly classified, and the error is the proportion of incorrect
classifications issued. Let nt+ be the number of positive examples correctly clas-
sified, nt− the number of negative examples correctly classified, nm the number
of times that a rule has been matched, and nt the number of examples available.
Using these values, the accuracy and error of a rule r can be computed as:

α(r) =
nt+(r) + nt−(r)

nt
(1)

ε(r) =
nt+

nm
(2)

We note that the error (equation 2) only takes into account the number of
correct positive examples classified. This is due to the close-world assumption of
the knowledge representation which follows from using a default rule. Once the
accuracy and error of a rule are known, the fitness can be computed as follows.

f(r) = α(r) · ε(r) (3)

The above fitness measure favors rules with a good classification accuracy and a
low error, or maximally general and maximally accurate rules. In another words,
rules that cover the maximum number of examples without covering examples
of the non-described class.

The identification of MPM in every generation is formulated as a constrained
optimization problem,

Minimize Cm + Cp (4)
Subject to

χki ≤ n ∀i ∈ [1, m] (5)

Linkage Learning, Rule Representation, and the χeCCS 193

where Cm is the model complexity which represents the cost of a model and is
given by

Cm = logχ(n + 1)
m∑

i=1

(
χki − 1

)
(6)

and Cp is the compressed population complexity which represents the cost of
using a simple model as against a complex one and is evaluated as

Cp =
m∑

i=1

χki∑
j=1

Nij logχ

(
n

Nij

)
(7)

where χ is the alphabet cardinality, m in the equations represent the number
of BBs, ki is the length of BB i ∈ [1, m], n the population size, and Nij is the
number of chromosomes in the current population possessing bit-sequence j ∈
[1, χki]1 for BB i. The constraint (Equation 5) arises due to finite population size.

The greedy search heuristic used in χ-eCGA starts with a simplest model
assuming all the variables to be independent and sequentially merges subsets
until the MDL metric no longer improves. Once the model is built and the
marginal probabilities are computed, a new population is generated based on the
optimal MPM as follows, population of size n(1 − pc) where pc is the crossover
probability, is filled by the best individuals in the current population. The rest
n · pc individuals are generated by randomly choosing subsets from the current
individuals according to the probabilities of the subsets as calculated in the
model.

One of the critical parameters that determines the success of χeCGA is
the population size. Analytical models have been developed for predicting the
population-sizing and the scalability of eCGA [20]. The models predict that the
population size required to solve a problem with m building blocks of size k with
a failure rate of α = 1/m is given by

n ∝ χk

(
σ2

BB

d2

)
m log m, (8)

where n is the population size, χ is the alphabet cardinality (here, χ = 3), k

is the building block size, σ2
BB

d2 is the noise-to-signal ratio [21], and m is the
number of building blocks. For the experiments presented in this paper we used
k = |a| + 1 (|a| is the number of address inputs for the multiplexer problem
described in the next section), σ2

BB

d2 =1.5, and m = �
|I| (where is the rule size

and |I| the number of inputs of the multiplexer problem).

2.1 Restricted Tournament Replacement

As mentioned earlier, to assemble a rule set that describes the concept we need
to maintain multiple maximally accurate and maximally general rules. Since we

1 Note that a BB of length k has χk possible sequences where the first sequence is 00· · · 0
and the last sequence (χ − 1)(χ − 1) · · · (χ − 1).

194 X. Llorà et al.

would like to maintain multiple maximally accurate, maximally general rules, we
need an efficient niching method, that does not adversely affect the quality of the
probabilistic models. Therefore, following previous studies in EDAs [22], we use re-
stricted tournament replacement (RTR) [10]. We note that a sub-structural nich-
ing method might be better than RTR in stably maintaining multiple niches [23],
and it can be readily incorporated into the proposed algorithm. In RTR, each new
offspring solution x is incorporated into the original population using the follow-
ing three steps: (1) select a random subset W of size w (called window size) from
the original population (before selection), (2) find the solution y in W that is most
similar to x (in terms of Euclidean distance), and (3) make a tournament between
x and y where x replaces y if it is better than y. The parameter w is called window
size, and a good rule of thumb for setting this parameter is w ∝ , where is the
problem size [22]. We note that the window size w affects the number of niches
that can be maintained by RTR. That is, increasing the window size can poten-
tially increase the number of niches that can be maintained in the population and
also increases the probability of maintaining the niches [10,22].

We note that the population size n, affects the success probability of main-
taining all maximally general, maximally accurate rules, γ. In essence, RTR
requires larger population sizes to maintain the global optima for longer time.
This is a well understood phenomena of niching methods and has been analyzed
by Mahfoud for fitness sharing [24] and is applicable to RTR as well [23]. The
minimum population size required by RTR for maintaining at least one copy
of all but one maximally general maximally accurate rules in the population is
given by [24,23]

n ∝
log

[(
1 − γ1/t

)
/nopt

]
log [(nopt − 1) /nopt]

(9)

where t is the number of generations we need to maintain all the niches, nopt is
the total number of maximally general maximally accurate rules.

3 Results

We conducted a set of initial tests of the χeCCS to evaluated whether it is
capable of: (1) identifying and exploit problem structure, and (2) co-evolving a
set of rules in a single run. Specifically, we used the multiplexer problem [18]
with 3, 6, 11, 20, 37, and 70 inputs.

3.1 Substructure in the Multiplexer

We begin by investigating whether χeCCS is able to mine the substructures of
the multiplexer problem. The results show that χeCGA does indeed discover
important substructures, and the models for each of the multiplexer problems
are shown in Table 1. From the models shown in Table 1, we can clearly see that
the building-block size grows linearly with the number of address bits (|a|). Since
the maximally accurate and maximally general rules specify |a|+1 positions in
the rule, we can intuitively expect the building block size to grow with the
problem size.

Linkage Learning, Rule Representation, and the χeCCS 195

Table 1. Illustrative models evolved by eCCS for different sizes of the multiplexer
problem. The number in parenthesis shows the average number of maximally accurate
and maximally general rules evolved after 10 independent runs.

3-input multiplexer (3)
[0 2] [1] (3)

01#:1, 1#1:1, #11:1

6-input multiplexer (7)
[0 3][1 4][2 5]

001###:1, 0#11##:1

01#1##:1, 1###11:1

10##1#:1, #01#1#:1

11###1:1, #1#1#1:1

11-input multiplexer (14)
[0 4 5][1 6 10][2 7 8][3 9]

0001#######:1, 00#11######:1

001#1######:1, 01###11####:1

010##1#####:1, 0#1#1#1####:1

011###1####:1, 10#####11##:1

100####1###:1, 11#######11:1

101#####1##:1, 1#1#####1#1:1

110######1#:1, #001###1###:1

111#######1:1, . . .

20-input multiplexer (31)
[0 1 3 4][2 10 11 15][5 13][6][7][8]

[9 17][12 18][14][16][19]

00001###############:1, 1000########1#######:1

0001#1##############:1, 1001#########1######:1

0010##1#############:1, 1010##########1#####:1

0011###1############:1, 1011###########1####:1

0100####1###########:1, 1100############1###:1

0101#####1##########:1, 1101#############1##:1

0110######1#########:1, 1110##############1#:1

0111#######1########:1, 1111###############1:1

· · ·
37-input multiplexer (38)
[0 1 3 9 15][2 7 11 29 33][4 16 34]

[5 20 21][6 8 12 14][10 25 26]

[13 18 23 30][17 19 24 31][22 32]

[27 35][28][36]

Rules omitted.
70-input multiplexer (—)
[0 6 43 64][1 8 23 27][2 22][3 40 50 66][4 5 7 61][9 33 53 55]

[10 11 12 32 36 62][13 51 57 68][14 15 16 26 42 45]

[17 24 34 59][18 19 44 46 52][20 25 30 58][21 47 49 54]

[28 29 41 60][31 37 56 69][35 38 39 48 63 65 67]

Rules omitted.

196 X. Llorà et al.

3.2 Getting a Set of Rules

We now investigate the niching capability of RTR that permits the evolution of
an optimal rule set. Before we present the number of rules evolved in χeCCS, we
first calculate the total number of maximally accurate and maximally general
rules that exist for a given multiplexer, given a default rule. That is, we can
compute the number of rules in [O] [7] and the number of overlapping rules
given the number of address inputs |a| as follows:

size(|a|) = |[O]| + |[OV]| = 2|a| + |a| 2|a|−1 = (2 + |a|)2|a|−1 (10)

For the the 3-input, 6-input, 11-input, 20-input, 37-input, and 70-input multi-
plexer, the total number of maximally accurate and maximally general rules is
3, 8, 20 ,48, 118, 256 respectively.

However, not all these rules are needed to assemble a ruleset that describes
the target concept. For instance, a minimal ensemble is the one provided by [O].
The number of maximally accurate and maximally general rules evolved on an
average in the ten independent runs are shown in Table 1. The results clearly
show that RTR does indeed facilitate the simultaenous evolution of the optimal
rule set. We also investigated the scalability of the number of function evalutions
required by χeCCS to evolve at least |[O]| rules during a single run. We note
that the size of [O] grows exponentially with respect of the number of address
inputs. The population size used was the one introduced in the previous section.
Figure 1 shows the number of iterations required by χeCCS only grows linearly.
Therefore, the number of function evaluations scale exponentially with the num-
ber of address bits (building-block size) and quadratically with the problem size

●

●

●

●

●

10 20 30 40 50 60 70

10
20

30
40

Problem Size

N
um

be
r

of
 it

er
at

io
ns

Fig. 1. Number of iterations required to obtain at least |[O]| = 2|a| maximally accurate
and maximally general rules. Results are the average of ten independent runs.

Linkage Learning, Rule Representation, and the χeCCS 197

(number of building blocks). This is despite the exponential growth in the size
of the optimal rule set. Moreover, the scalability results are as predicted by the
facetwise models developed for competent GAs.

4 Probabilistic Models and Knowledge Representations

Building probabilistic models using rules is quite simple when a finite length
and cardinality exists. For instance, the χ-eCCS models a populations of rules
encoded using the well-known ternary alphabet {0,1,#} scheme. χ-eCCS shows
that when using the proper niching technique (RTR), it can evolve a population
of rules, diverse enough, to create an ensemble that solves the problem accurately.
Moreover, such probabilistic model building has also been shown as the basis of
the estimation of rule fitness—as shown elsewhere [25]. However, the ternary
alphabet {0,1,#} can only express rather simple conditions. Other encoding
schemes may provide improved expressiveness of condition clauses [26,27], but
at the expense of either violating the finite length or cardinality assumptions
that make the probabilistic model building possible.

Recently, Wilson [11] introduced XCSF-GEP. The key modification intro-
duced is the usage of rule conditions á la gene expression programming (GEP)
[12,13]. A complete description of GEP is beyond the scope of this paper. How-
ever, we will review the key elements used in XCSF-GEP: the Karva language
and its expression mechanism. GEP relies on gene expression mechanisms. Each
individual contains one (unigenic individuals) or more genes (multigenic indi-
viduals). Wilson [11] explored GEP encodings to facilitate the expression of
arithmetic expressions. His elegant solution allowed XCS to express a rich set
of conditions, not possible otherwise. We will follow Wilson’s approach, but we
will only focus on traditional binary rules—a more well defined area than the
original Wilson’s work. The gene contains a sequence of alleles, which in XCSF-
GEP is the basis of the condition obtained by the expression mechanism. When
using multigenic individuals, the linking function is the one responsible of com-
bining the expressed genes. The Karva language specifies what symbols can be
used in a genome sequence as well as the expression mechanism that translate
the genome sequence into a phenotype. A complete description of GEP and the
Karva language can be found elsewhere [12,13].

4.1 Gene Expression Programming and the Karva Language

To illustrate how conditions are expressed using the Karva language, we will
introduce a simple example to illustrate its main properties. GEP, similarly as
genetic programming [28] does, has two distinct elements in its genome: function-
als and terminals. For instance, for the 6-input multiplexer the set of functionals
might be {¬, ∧}, whereas the set of terminals could be {a0, a1, i0, i1, i2, i3}—ai

standing for the ith address line and ij standing for the jth input line. Using this
basic set of functionals and terminals, we can express the same kind of condi-
tions as the ones expressed using the traditional ternary {0,1,#} alphabet. We

198 X. Llorà et al.

^

^

¬ ¬

i
0

a
1

a
0

(a) First expression tree

^

^¬

¬ i
0

a
1

a
0

(b) Second expression tree

Fig. 2. Two possible expression trees for rule 001###:0. Several other expressions are
possible by swapping a0 and a1 in each of the trees presented, or by traversing the tree
using different orders.

illustrate this point with the following simple example. Given the rule 001###:0,
expressed using the ternary alphabet, Figure 2 presents the 2 possible expres-
sion trees for this rule. Figure 2 also shows how the same rule may have multiple
expression trees.

However, Figure 2 also illustrates a property of the encoding used by GEP via
the Karva language, redundancy at the expression level, as well as at the encod-
ing level. These expressed trees in Figure 2 are the results of the following two
genomes: {∧, ∧, i0, ¬, ¬, a0, a1, · · · } and {∧, ¬, ∧, a0, ¬, i0, a1, · · · }. The expres-
sion mechanism explores the genome from left to right building the expression
tree using breadth-first traversal [12,13].

This encoding has also another interesting property. The genome can be split
in two different sections: the head and the tail. The head may contain function-
als and terminals, whereas the tail only contains terminals. Given the example
above, the head needs to be up to 5 symbols in length to be able to encode the
proper conditions. Once the length of the head is fixed, the length of the tail is
defined as:

t = h(nmax − 1) + 1 (11)

where h is the length of the head, t the length of the tail, and nmax is the
maximum function arity. Hence, if we fix the length of the head we also fix
the length of the gene. GEP [12,13] fixes the maximum length of the head and,
thus, it deals with finite length genes. Despite of the fixed length, the gene can
still express different size trees. Wilson [11] showed how fixed length genes can
provide a rich set of expressible conditions which can be efficiently searched using
XCSF-GEP. Thus, the Karva language can provide an elegant way to express
variable length conditions while still maintaining finite length and arity genomes.

Multigenic individuals could easily represent a rule set. The linking function
would combine the expressed rules together. A possible linking function could be

Linkage Learning, Rule Representation, and the χeCCS 199

Table 2. Maximally general and maximally accurate rules for the 6-input multiplexer.
The table below shows one of the possible encoding of the rule under the Karva encoding
language.

Ternary alphabet encoding Karva language encoding

001###:1 {∧, ∧, i0, ¬, ¬, a0, a1, · · · }
01#1##:1 {∧, ∧, i1, ¬, a1, a0, · · · }
10##1#:1 {∧, ∧, i2, a0, ¬, a1, · · · }
11###1:1 {∧, ∧, i3, a0, a1, · · · }
0#11##:1 {∧, ∧, i1, ¬, i0, a0, · · · }
1###11:1 {∧, ∧, i3, a0, i2, · · · }
#01#1#:1 {∧, ∧, i2, ¬, i0, a1, · · · }
#1#1#1:1 {∧, ∧, i3, a1, i1, · · · }

the or function, which would lead to individuals to express rule sets normalized
in a disjunctive normal form. A more Pittsburgh flavored linking function could
also be the decision list, which would be the equivalent of the χ-eCCS final rule
set ensembles.

4.2 Building Probabilistic Models for the Karva Language

The χ-eCCS relies on the model-building mechanism proposed by eCGA [16].
The Karva encoding presented on the previous section still provides finite length
and finite arity genomes. Hence, we can use the proposed χ-eCCS on individ-
uals where its genome follows the Karva encoding scheme. In order to validate
such assumption we used unigenic individuals to solve the 6-input multiplexer
problem. As introduced above, in order to solve the 6-input multiplexer, the
unigenic GEP-like individuals are expressed using the set of functionals {¬, ∧}
and terminals {a0, a1, i0, i1, i2, i3}—ai standing for the ith address line and ij
standing for the jth input line. Table 2 shows a possible translation for each of
the maximally general and maximally accurate rules for the 6-input multiplexer.
Figures 3 and 4 show one of the possible expressed trees (and its genome) for
each of the 6-input multiplexer maximally accurate and maximally general rules.

In order to test the viability of such and encoding, we modified the χ-eCCS to
evolve unigenic Karva-encoded individuals as described above. We set the length
of the head to h = 5 (the minimum required to express the more verbose rule
001###)2. Since, the maximum function arity nmax = 2, the length of the tail is
t = h(nmax−1)+1 = 5(2−1)+1 = 6 and, hence, the total length of the unigenic
individual is = h + t = 5 + 6 = 11. We also set the same population size as the
one used for solving the 6-input multiplexer using the {0,1,#} ternary alphabet.
Using this new encoding χ-eCCS was able to accurately solve the 6-input mul-
tiplexer by evolving the eight maximally general and maximally accurate rules
required—see Table 2. More interesting were the evolved probabilistic models.

2 It is important to note here that χ-eCCS relies on a close world assumption, only
modeling rules for the positive examples [29,25].

200 X. Llorà et al.

^

^

¬ ¬

i
0

a
1

a
0

(a) 001### −→ {∧, ∧, i0, ¬, ¬, a0, a1, · · · }

^

^

¬

i
1

a
1

a
0

(b) 01#1## −→ {∧, ∧, i1, ¬, a1, a0, · · · }

^

^

¬

i
2

a
1

a
0

(c) 10##1# −→ {∧, ∧, i2, a0, ¬, a1, · · · }

^

^ i
3

a
1

a
0

(d) 11###1 −→ {∧, ∧, i3, a0, a1, · · · }

Fig. 3. Figures above show one of the possible expressed trees (and its genome) for
each of the 6-input multiplexer non-overlapping maximally accurate and maximally
general rules

After checking several runs of χ-eCCS, the dominant model used throughout the
evolutionary process was:

[0 1][2][3][4][5][6][7][8][9][10]

The two first elements of the head were repeatedly grouped together. Reviewing
some of the possible Karva-encodings—seeTable 2 and Figures 3 and 4—it is clear
that for the 6-input multiplexer problem those two head positions define the main
context of the rule (∧, ∧)3. Context identification becomes key to solve the multi-
plexer problem(express amaximally general andmaximally accurate rule).Thus, if
the Karva-encoding is also a viable encoding for χ-eCCS allowing it to express arbi-
trary complex conditions, the open question becomes which one should we choose.

3 The ∧, ∧ turned out to be quite a dominant one when compare to the other possible
encodings.

Linkage Learning, Rule Representation, and the χeCCS 201

^

^

¬

i
1

i
0

a
0

(a) 0#11## −→ {∧, ∧, i1, ¬, i0, a0, · · · }

^

^ i
3

i 2a
0

(b) 1###11 −→ {∧, ∧, i3, a0, i2, · · · }

^

^

¬

i
2

i
0

a
1

(c) #01#1# −→ {∧, ∧, i2, ¬, i0, a1, · · · }

^

^ i
3

i
1

a
1

(d) #1#1#1 −→ {∧, ∧, i3, a1, i1, · · · }

Fig. 4. Figures above show one of the possible expressed trees (and its genome) for
each of the 6-input multiplexer overlapping maximally accurate and maximally general
rules

4.3 Rule Representation, Probabilistic Model Building, and
Population Sizes

The answer to which of the possible knowledge representations would be more
efficient (the ternary {0,1,#} or the Karva encoding) can be deduced from the
population size required for accurately building probabilistic models. The χ-eCCS
model builder relies on marginal probability models (MPM). As shown by Llorà et
al. (2006), the population size requirements for an accurate model building follow
the same theory as χ-ary eCGA [20,8]—as shown in equation 8. We can rewrite
the population sizing model in equation 8 for both rule representations.

Assuming that t = k · m—k being the building block order and m the num-
ber of building blocks—and t = |a|+2|a|—multiplexer problem—for the 6-input
multiplexer the populating sizing, shown in equation 9, can be rewritten substi-
tuting k = |a| + 1 and m = t/(|a| + 1) as:

n01# ∝ 3|a|+1ct

(
|a| + 2|a|

|a| + 1

)
log

(
|a| + 2|a|

|a| + 1

)
. (12)

202 X. Llorà et al.

The same substitutions can be done the Karva encoding. Assuming k = a—
see the models presented on the previous section for Karva-encoded popula-
tions4—and m = k/a5, and the minimum length required of the head can be
approximated by h = a, hence k = |a| + |a|(2 − 1)+ 1 = 2|a| +1 the population
size, shown in equation 9, rewrites into:

nKarva ∝
(
|a| + 2|a| + 2

)|a|
ck

(
2|a| + 1

|a|

)
log

(
2|a| + 1

|a|

)
. (13)

5 10 20 50 100 200

1e
+

00
1e

+
05

1e
+

10
1e

+
15

1e
+

20

Problem size

P
op

ul
at

io
n

si
ze

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Karva encoding
Ternary alphabet

Fig. 5. Asymptotic population-sizing requirements for the ternary alphabet and Karva
encodings

Figure 5 presents the asymptotic population-sizing requirements for the ternary
alphabet and Karva encodings presented in equations 12 and 13. It is important
to note that both axis of the figure are plotted on a logarithmic scale. The
population sizing for the Karva encoding grows much faster than the ternary
encoding. This is mainly the results of the increased cardinality—from χ = 3
of the ternary encoding to χ = |a| + 2|a| + 2 of the Karva encoding. As the
problem grows the Karva-encoding arity grows, whereas the ternary-encoding
one remains constant. The growth can be approximated as

growth =
nKarva

n01#
∝ 1

3

(
 + 2

3

)a

, (14)

4 The key share element among all the 6-input multiplexer rules is the need for two
conjunctions that provide the overall context to bind the two address lines and one
input. For this reason, it is reasonable to assume that a lower bound for the building
block size is the number of conjunctions required, which in turn is equal to the number
of address lines (|a|).

5 Where �k is determined by the length of the head as shown in equation 11.

Linkage Learning, Rule Representation, and the χeCCS 203

being t = |a|+2|a|. It is clear after equation 14 that the Karva encoding scheme
quickly becomes unfeasible due to its extreme growth rate when compared to
the traditional ternary {0,1,#} encoding.

5 Conclusions

We have presented how linkage can be successfully identified and exploited to
evolve a set of maximally general and maximally accurate rules using Pittsburgh-
style learning classifier systems. We introduced the χ-ary extended compact
classifier system (χeCCS) which uses (1) a χ-ary extended compact genetic al-
gorithm (χeCGA), and (2) restricted tournament replacement to evolve a set of
maximally accurate and maximally general rule set. The results show that link-
age exists in the multiplexer problem—confirming CCS results—and also show
that in accordance with the facetwise models from GA theory, the number of
function evaluations required by χeCCs to successfully evolve an optimal rule
set scales exponentially with the number of address bits (building block size)
and quadratically with the problem size.

We also explored an alternative rule encoding scheme for multiplexer prolems
based on gene expression programming. Unigenic individuals encoded using the
Karva language, and its associated expression mechanism, still retain a finite
genome length and arity that makes them good candidates for χeCCS proba-
bilistic model building process. However, despite this good preamble, the Karva
encoding introduced an explosion on the arity of the individuals. Instead of the
quite contained arity χ = 3 of the traditional ternary {0,1,#} encoding, the
Karva-encoded individuals present and arity that increased linearly with the
problem size, χ = 2 + . As was shown in equation 14 and figure 5, the Karva
encoding scheme quickly becomes unfeasible due to its extreme population size
growth rate when compared to the traditional ternary {0,1,#} encoding. Thus,
although the Karva-encoded individuals still provide a feasible solution for small
problems, the traditional ternary {0,1,#} alphabet provides a better scalability
when facing larger problems that requires binary rules. However, these results
are only applicable to multiplexer problems.The Karva encoding can solve ele-
gantly and efficiently other classes of problems, such at the creation of arithmetic
conditions as Wilson showed in XCSF-GEP [11].

Acknowledgments

We would like to thank Stewart W. Wilson for his valuable comments and input
during the preparation of this manuscript that helped to greatly improve its
quality.

This work was sponsored by the Air Force Office of Scientific Research, Air
Force Materiel Command, USAF, under grant FA9550-06-1-0370, the National
Science Foundation under ITR grant DMR-03-25939 at Materials Computation
Center and under grant ISS-02-09199 at the National Center for Supercomputing

204 X. Llorà et al.

Applications, UIUC. The U.S. Government is authorized to reproduce and dis-
tribute reprints for government purposes notwithstanding any copyright notation
thereon.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the Air Force Office of Scientific
Research, the National Science Foundation, or the U.S. Government.

References

1. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic
Algorithms. Kluwer Academic Publishers, Norwell (2002)

2. Butz, M.V., Lanzi, P.L., Llorà, X., Goldberg, D.E.: Knowledge extraction and
problem structure identification in XCS. Parallel Problem Solving from Nature -
PPSN VIII 3242, 1051–1060 (2004)

3. Butz, M.V., Pelikan, M., Llorà, X., Goldberg, D.E.: Extracted global structure
makes local building block processing effective in XCS. In: Proceedings of the 2005
Conference on Genetic and Evolutionary Computation, vol. 1, pp. 655–662 (2005)

4. Pelikan, M., Lobo, F., Goldberg, D.E.: A survey of optimization by building and
using probabilistic models. Computational Optimization and Applications 21, 5–20
(2002)

5. Harik, G., Lobo, F., Goldberg, D.E.: The compact genetic algorithm. In: Pro-
ceedings of the IEEE International Conference on Evolutionary Computation, pp.
523–528 (1998) (Also IlliGAL Report No. 97006)

6. Llorà, X., Sastry, K., Goldberg, D.E.: The Compact Classifier System: Motiva-
tion, analysis, and first results. In: Proceedings of the Congress on Evolutionary
Computation, vol. 1, pp. 596–603 (2005)

7. Kovacs, T.: Strength or Accuracy: Credit Assignment in Learning Classifier Sys-
tems. Springer, Heidelberg (2003)

8. de la Ossa, L., Sastry, K., Lobo, F.G.: Extended compact genetic algorithm in
C++: Version 1.1. IlliGAL Report No. 2006013, University of Illinois at Urbana-
Champaign, Urbana, IL (March 2006)

9. Sastry, K., Goldberg, D.E.: Probabilistic model building and competent genetic
programming. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and
Practise, pp. 205–220. Kluwer Academic Publishers, Dordrecht (2003)

10. Harik, G.R.: Finding multimodal solutions using restricted tournament selection.
In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp.
24–31 (1995) (Also IlliGAL Report No. 94002)

11. Wilson, S.W.: Classier Conditions Using Gene Expression Programming. IlliGAL
Technical Report No. 2008001, Illinois Genetic Algorithms Laboratory, University
of Illinois at Urbana-Champaign (2008)

12. Ferreira, C.: Gene expression programming: A new algorithm for solving problems.
Complex Systems 13(2), 87–129 (2001)

13. Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Arti-
ficial Intelligence. Springer, Heidelberg (2006)

14. Bernadó-Mansilla, E., Garrell-Guiu, J.M.: MOLeCS: A MultiObjective Learning
Classifier System. In: Proceedings of the 2000 Conference on Genetic and Evolu-
tionary Computation, vol. 1, p. 390 (2000)

Linkage Learning, Rule Representation, and the χeCCS 205

15. Bernadó-Mansilla, E., Llorà, X., Traus, I.: MultiObjective Learning Classifier Sys-
tem. In: MultiObjective Machine Learning, pp. 261–288. Springer, Heidelberg
(2005)

16. Harik, G.R., Lobo, F.G., Sastry, K.: Linkage learning via probabilistic modeling in
the ECGA. In: Pelikan, M., Sastry, K., Cantú-Paz, E. (eds.) Scalable Optimization
via Probabilistic Modeling: From Algorithms to Applications. Springer, Heidelberg
(2006) (Also IlliGAL Report No. 99010)

17. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis,
and first results. Complex Systems 3(5), 493–530 (1989)

18. Wilson, S.: Classifier fitness based on accuracy. Evolutionary Computation 3(2),
149–175 (1995)

19. Llorà, X., Sastry, K., Goldberg, D.E., Gupta, A., Lakshmi, L.: Combating user
fatigue in iGAs: Partial ordering, support vector machines, and synthetic fitness.
In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary
computation, 25-29 June 2005, vol. 2, pp. 1363–1370. ACM Press, Washington
(2005)

20. Sastry, K., Goldberg, D.E.: Designing competent mutation operators via probabilis-
tic model building of neighborhoods. In: Proceedings of the Genetic and Evolution-
ary Computation Conference, vol. 2, pp. 114–125 (2004) (Also IlliGAL Report No.
2004006)

21. Goldberg, D.E., Deb, K., Clark, J.H.: Genetic algorithms, noise, and the sizing of
populations. Complex Systems 6, 333–362 (1992)

22. Pelikan, M.: Hierarchical Bayesian Optimization Algorithm: Toward a New Gen-
eration of Evolutionary Algorithm. Springer, Berlin (2005)

23. Sastry, K., Abbass, H.A., Goldberg, D.E., Johnson, D.D.: Sub-structural niching
in estimation of distribution algorithms. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference, pp. 671–678 (2005)(Also IlliGAL Report No.
2005003)

24. Mahfoud, S.W.: Population size and genetic drift in fitness sharing. Foundations
of Genetic Algorithms 3, 185–224 (1994)

25. Llorà, X., Sastry, K., Yu, T.L., Goldberg, D.E.: Do not match, inherit: fitness
surrogates for genetics-based machine learning techniques. In: GECCO 2007: Pro-
ceedings of the 9th annual conference on Genetic and evolutionary computation,
pp. 1798–1805. ACM, New York (2007)

26. Lanzi, P.L.: Extending the Representation of Classifier Conditions Part I: From
Binary to Messy Coding. In: Proceedings of the Genetic and Evolutinary Compu-
tation Conference (GECCO 1999), pp. 337–344. Morgan Kaufmann, San Francisco
(1999)

27. Lanzi, P., Perrucci, A.: Extending the Representation of Classifier Conditions Part
II: From Messy Coding to S-Expressions. In: Proceedings of the Genetic and Evo-
lutinary Computation Conference (GECCO 1999), pp. 345–352. Morgan Kauf-
mann, San Francisco (1999)

28. Koza, J.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge (1992)

29. Llorà, X., Aĺıas, F., Formiga, L., Sastry, K., Goldberg, D.E.: Evaluation consis-
tency in iGAs: User contradictions as cycles in partial-ordering graphs. In: IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP
2006), vol. 1, pp. 865–868 (2006) (Also as IlliGAL TR No. 2005022)

Classifier Conditions Using Gene
Expression Programming

Invited paper

Stewart W. Wilson

Prediction Dynamics, Concord MA 01742 USA
Department of Industrial and Enterprise Systems Engineering
The University of Illinois at Urbana-Champaign IL 61801 USA

wilson@prediction-dynamics.com

Abstract. The classifier system XCSF was modified to use gene ex-
pression programming for the evolution and functioning of the classifier
conditions. The aim was to fit environmental regularities better than
is typically possible with conventional rectilinear conditions. An initial
experiment approximating a nonlinear oblique environment showed ex-
cellent fit to the regularities.

1 Introduction

A learning classifier system (LCS) [14] is a learning system that seeks to gain
reinforcement from its environment via an evolving population of condition-
action rules called classifiers. Broadly, each classifier has a condition, an action,
and a prediction of the environmental payoff the system will receive if the system
takes that action in an environmental state that satisfies its condition. Through a
Darwinian process, classifiers that are useful in gaining reinforcement are selected
and propagated over those less useful, leading to increasing system performance.

A classifier’s condition is important to this improvement in two senses. First,
the condition should contribute to the classifiers’s accuracy: the condition should
be satisfied by, or match, only states such that the classifier’s action indeed re-
sults in the predicted payoff. Second, the condition should be general in the
sense that the classifier should match as many such states as possible, leading to
compactness of the population and, for many applications, transparency of the
system’s knowledge. In effect, the conditions should match the environment’s
regularities—state subsets with similar action payoffs. This depends in part on
the course of the evolutionary process. But it also depends on whether the con-
dition syntax actually permits the regularities to be represented.

Classifier system environments were initially [10] defined over binary domains.
The corresponding condition syntax consisted of strings from {1,0,#}, with
a “don’t care” symbol matching either 1 or 0. This syntax is effective for
conjunctive regularities—ANDs of variables and their negations—but cannot
express, e.g., x1 OR x2. Later, for real-vector environments, conditions were in-
troduced [20] consisting of conjunctions of interval predicates, where each pred-
icate matches if the corresponding input variable is between a pair of values.

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 206–217, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Classifier Conditions Using Gene Expression Programming 207

The same logical limitation also applies—only conjuncts of intervals can be rep-
resented. But going to real values exposes the deeper limitation that accurately
matchable state subsets must be hyperrectangular, whereas many environmen-
tal regularities do not have that shape and so will elude representation by single
classifiers.

Attempts to match regularities more adroitly include conditions based on hy-
perellipsoids [2] and on convex hulls [15]. Hyperellipsoids are higher-dimensional
ellipse-like structures that will evolve to align with regularity boundaries. Con-
vex hulls—depending on the number of points available to define them—can be
made to fit any convex regularity. Research on both techniques has shown pos-
itive results, but hyperellipsoids are limited by being a particular, if orientable,
shape, and the number of points needed by convex hulls is exponential with
dimensionality.

Further general approaches to condition syntax include neural networks (NNs)
[1] and compositions of basis functions—trees of functions and terminals—such
as LISP S-expressions [13]. In both cases, matching is defined by the output
exceeding a threshold (or equal to 1 (true) in the case of S-expressions of bi-
nary operators). NNs and S-expressions are in principle both able to represent
arbitrary regularities but NNs may not do so in a way that makes the regular-
ity clear, as is desirable in some applications. Moreover, unlike its weights, the
NN’s connectivity is in most cases fixed in advance, so that every classifier must
accept inputs from all variables, whereas this might not be necessary for some
regularities. In contrast to NNs, functional conditions such as S-expressions offer
greater transparency—provided their complication can be controlled—and have
the ability to ignore unneeded inputs or add ones that become relevant.

This paper seeks to advance understanding of functional conditions by ex-
ploring the use of gene expression programming [7,8] to define LCS conditions.
Gene expression programming (GEP) is partially similar to genetic program-
ming (GP) [11] in that their phenotype structures are both trees of functions
and terminals. However, in GEP the phenotype results from translation of an
underlying genome, a linear chromosome, which is the object of selection and
genetic operators; in GP the phenotype itself acts as the genome and there is no
translation step. Previous classifier system work with functional conditions has
employed GP [13]. For reasons that will be explained in the following, GEP may
offer more powerful learning than GP in a classifier system setting, as well as
greater transparency. However, the primary aim of the paper is to test GEP in
LCS and assess how well it fits environmental regularities, while leaving direct
comparisons with GP for future work.

The next section examines the limits of rectilinear conditions in the context
of an example landscape that will be used later on. Section 3 presents basics of
GEP as they apply to defining LCS conditions and introduces our test system,
XCSF-GEP. Section 4 applies XCSF-GEP to the example landscape. The paper
concludes with a discussion of the promise of GEP in LCS and the challenges
that have been uncovered.

208 S.W. Wilson

2 Limits of Traditional Conditions

Classifier systems using traditional hyperrectangular conditions have trouble
when the regularities of interest have boundaries that are oblique to the co-
ordinate axes. Because classifier fitness (in current LCSs like XCS [19] and its
variants) is based on accuracy, the usual consequence is evolution of a patchwork
of classifiers with large and small conditions that cover the regularity, including
its oblique boundary, without too much error. Although at the same time there
is a pressure toward generality, the system cannot successfully cover an oblique
regularity with a single large condition because due to overlap onto adjacent
regularities such a classifier will not be accurate. Covering with a patchwork of
classifiers is, however, undesirable because the resulting population is enlarged
and little insight into the regularity or even its existence is gained.

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 0.2
 0.4
 0.6
 0.8

 1

P(x,y)

2-(x+y)
x+y

x

y

P(x,y)

Fig. 1. “Tent” payoff landscape P (x, y)

An example will make these ideas clear. Figure 1 shows a tent-like two-
dimensional payoff landscape where the projection of each side of the tent onto
the x-y plane is a triangle (the landscape is adapted from [25]). The two sides
represent different regularities: each is a linear function of x and y but the slopes
are different. The equation for the payoff function is

P (x, y) =
{

x + y : x + y ≤ 1
2 − (x + y) : x + y ≥ 1 (1)

The landscape of Figure 1 can be learned by XCSF [24] in its function ap-
proximation version [21,22]. XCSF approximates non-linear functions by cover-
ing the landscape with classifiers that compute local linear approximations to
the function’s value. Each such classifier will match in a certain subdomain and
its prediction will be a linear function—via a weight vector—of the function’s
input. The classifier’s condition evolves and its weight vector is adjusted by feed-
back until the prediction is within an error criterion of the function’s value in

Classifier Conditions Using Gene Expression Programming 209

that subdomain. At the same time, the condition will evolve to be as large as
possible consistent with the error criterion. In this way XCSF forms a global
piecewise-linear approximation to the function (for details of XCSF please see
the references).

In the case of Figure 1, XCSF will evolve two sets of classifiers corresponding
to the two sides of the tent. All the classifiers on a side will end up with nearly
identical weight vectors. But their conditions will form the patchwork described
earlier—a few will be larger, located in the interior of the triangle, the rest will be
smaller, filling the spaces up to the triangle’s diagonal. The problem is: rectangles
don’t fit triangles, so the system is incapable of covering each side with a single
classifier. If the conditions could be triangles, the system would need only two
classifiers, and they would clearly represent the underlying regularities.

3 Gene Expression Programming in XCSF

3.1 Some Basics of GEP

As noted earlier, in GEP there is both a genome, termed chromosome, and a
phenotype, termed expression tree (ET), with the expression tree derived from
the chromosome by a process called translation. The ET’s performance in the
environment determines its fitness and that of the corresponding chromosome,
but it is the chromosome which undergoes selection and the actions of genetic
operators.

An example chromosome might be -*ea+b/cdbbaddc. The arithmetic sym-
bols stand for the four arithmetic functions. The alphabetic symbols are called
terminals and take on numeric values when the expression tree is evaluated. The
first seven symbols of this chromosome form the head ; the rest, all terminals,
form the tail. Whatever the length of the chromosome, the head, consisting of
functions and terminals, and tail, consisting only of terminals, must satisfy

t = h(nmax − 1) + 1, (2)

where h is the length of the head, t the length of the tail, and nmax is the
maximum function arity (in this case 2). The reason for the constraint implied
by this equation will be explained shortly.

Many genetic operators can be employed in GEP. The simplest and, according
to Ferreira [8], the most powerful, is mutation. It simply changes a symbol to one
of the other symbols, with the proviso that, in the head, any symbol is possible,
but in the tail, symbols can only be changed to other terminal symbols. Another
operator is inversion: it picks start and termination symbols of a subsequence
within the head, and reverses that subsequence. Transposition is a further op-
erator which comes in three forms [7]. The simplest, IS transposition, copies a
subsequence of length n from anywhere in the chromosome and inserts it at a
random point between two elements of the head; to maintain the same chromo-
some length, the last n elements of the head are deleted. Several recombination
operators are used, including one- and two-point, which operate like traditional
crossover on a pair of chromosomes.

210 S.W. Wilson

The translation from chromosome to expression tree is straightforward.
Proceeding from left to right in the chromosome, elements are written in a
breadth-first manner to form the nodes of the tree. The basic rule is: (1) the
first chromosome element forms a single node at the top level (root) of the tree;
(2) further elements are written left-to-right on each lower level until all the
arities on the level above are satisfied; (3) the process stops when a level con-
sists entirely of terminals. Due to Equation 2, the tail is always long enough for
translation to terminate before running out of symbols. Figure 2, left side, shows
the ET for the example chromosome. Evaluation of the tree occurs from bottom
up, in this case implementing the expression a(b + c/d) − e.

Fig. 2. Translation of chromosome -*ea+b/cdbbaddc into expression trees (ETs).
Left, standard Karva translation. Right, prefix translation (Sec. 4.1).

The most important property of GEP translation is that every chromosome
is valid ; that is, as long as it obeys Equation 2, every possible chromosome
will translate into a legal, i.e., syntactically correct, tree. The reason is that in
the translation process all function arities are correctly satisfied. The validity
of every chromosome has the significant consequence that the genetic operators
cannot produce an illegal result. In fact, as long as it does not leave function
symbols in the tail, any definable operator will be “safe”. This is in some contrast
to other functional techniques such as GP, where certain operators cannot be
used without producing illegal offspring, or if used, the offspring must be either
edited back to legality or discarded. Ferreira ([8], pp. 22-27, 33-34) regards this
property of GEP as permitting a more thorough and therefore productive search
of the problem space. However, the search issue calls for further investigation
since GEP does have the restriction that the tail must be free of function symbols
and few direct performance comparisons have been made.

Gene expression programming has further important features, but since they
were not used in the present work they will only be mentioned here. One is the
ability to combine several genes into a single chromosome. These are chromo-
some segments that translate into separate expression trees. They are individ-
ually evaluated but their results are linked either by a predetermined operator

Classifier Conditions Using Gene Expression Programming 211

such as addition or by a linkage structure that is itself evolved in another part of
the chromosome. A second feature is that GEP has several methods for the con-
current evolution of real-valued constants that may be needed as coefficients and
terms in expressions. Both features (plus others) of GEP are likely to contribute
to the representational power of classifier conditions.

Finally, as in other functional approaches, GEP needs a method of dealing
with undefined or otherwise undesirable results from arithmetic operators. In
contrast to GP, GEP does not replace such operators with protected versions
for which the result cannot occur. Instead, normal operators are retained. Then
when, say, an operator like “/” receives a zero denominator argument, its tree’s
evaluation is aborted and the chromosome’s fitness is set to zero. The philosophy
is to remove (via lack of selection) such flawed chromosomes instead of further
propagating their genetic material.

3.2 XCSF-GEP

The application of GEP in classifier conditions is not complicated. Basically, the
condition is represented by a chromosome whose expression tree is evaluated
by assigning the system’s input variables to the tree’s terminals, evaluating the
tree, and comparing the result with a predetermined threshold. If the result
exceeds the threshold, the condition matches and its classifier becomes part
of the match set. From that point on, XCSF-GEP differs from XCSF only in
that its genetic operators are GEP operators (as in Sec. 3.1). Covering—the
case where no classifier matches the input—is handled by repeatedly generating
a new classifier with a random condition (but obeying Equation 2) until one
matches.

Adding GEP to XCSF would appear to have three main advantages. The
first stems from use of functional (instead of rectilinear) conditions, with the
consequent ability to represent a much larger class of regularities. The next two
stem from GEP in particular: simplicity of genetic operations and conciseness of
classifier conditions. Genetic operations are simple in GEP because they operate
on the linear chromosome and not on the expression tree itself. They are also
simple because offspring never have to be checked for legality, a requirement
which in other functional systems can be complex and costly of computation
time. However, perhaps the most attractive potential advantage of GEP is that
expression tree size is limited by the fixed size of the chromosome.

As noted in the Introduction, a classifier system seeks not only to model
an environment accurately, but to do so with transparency, i.e., in a way that
offers insight into its characteristics and regularities. It does this by evolving
a collection of separate classifiers, each describing a part of the environment
that ideally corresponds to one of the regularities, with the classifier’s condition
describing the part. Thus, it is important that the conditions be concise and
quite easily interpretable. For this, GEP would seem to be better than other
functional systems such as GP because once a chromosome size is chosen, the
expression tree size is limited and very much less subject to “bloat” [17] than
GP tree structures are. In GP, crossover between trees can lead to unlimited

212 S.W. Wilson

tree size unless constrained for example by deductions from fitness due to size.
In GEP, the size cannot exceed a linear function (hnmax +1) of the head length
and no fitness penalty is needed.

4 An Experiment

4.1 Setup

The XCSF-GEP system was tested on the tent landscape of Figure 1. As with
XCSF in its function approximation version [21,22], XCSF-GEP was given ran-
dom x, y pairs from the domain 0.0 ≤ x, y ≤ 1.0, together with payoff values
equal to P (x, y). XCSF-GEP formed a match set [M] of classifiers matching the
input, calculated its system prediction, P̂ , and the system error |P̂ − P (x, y)|
was recorded. Then, as in XCSF, the predictions of the classifiers in [M] were
adjusted using P (x, y), other classifier parameters were adjusted, and a genetic
algorithm was run in [M] if called for. In a typical run of the experiment this
cycle was repeated 10,000 times, for a total of 20 runs, after which the average
system error was plotted and the final populations examined. Runs were started
with empty populations.

For classifier conditions, XCSF-GEP used the function set {+ - * / >} and
the terminal set {a b}. If the divide function “/” encountered a zero denomina-
tor input the result was set to 1.0 and the fitness of the associated chromosome
was set to a very small value. The function “>” is the usual “greater than” ex-
cept the output values are respectively 1 and 0 instead of true and false. To
be added to [M], the evaluation of a classifier’s expression tree was required to
exceed a match threshold of 0.0. In covering and in mutation, the first (root)
element of the chromosome was not allowed to be a terminal.

Partially following [21] and using the notation of Butz and Wilson [5], param-
eter settings for the experiment were: population size N = 100, learning rate β
= 0.4, error threshold ε0 = 0.01, fitness power ν = 5, GA threshold θGA = 12,
crossover probability (one point) χ = 0.3, deletion threshold θdel = 50, fitness
fraction for accelerated deletion δ = 0.1, delta rule correction rate η = 1.0, con-
stant x0 augmenting the input vector = 0.5. Prior to the present experiment,
an attempt was made to find the best settings (in terms of speed of reduction
of error) for β, θGA, and χ. The settings used in the experiment were the best
combination found, with changes to θGA (basically, the GA frequency) having
the greatest effect.

Parameters specific to XCSF-GEP included a mutation rate µ = 2.0. Follow-
ing Ferreira ([8], p. 77), µ sets the average mutation rate (number of mutations)
per chromosome which, divided by the chromosome length, gives the rate per el-
ement or allele. A rate of µ = 2.0 has been found by Ferreira to be near-optimal.
The head length was set to 6, giving a chromosome length of 13. Inversion and
transposition were not used, nor was subsumption since there is no straightfor-
ward way to determine whether one chromosome subsumes another.

Besides testing XCSF-GEP as described in this paper, the experiment also
tested the same system, but with a different technique for translating the

Classifier Conditions Using Gene Expression Programming 213

chromosome. Ferreira calls the breadth-first technique “Karva” whereas it is
also possible to translate in a depth-first fashion called “prefix” (see, e.g., [16]).
Like Karva, prefix has the property that every chromosome translates to a valid
expression tree. Figure 2, right side, shows the translation of the chromosome of
Sect. 3.1 using prefix. Looking at examples of chromosomes and their trees, it is
possible to see a tendency under prefix more than under Karva for subsequences
of the chromosome to translate into compact functional subtrees. This may mean
(as Li et al [16] argue) that prefix preserves and propagates functional building
blocks better than Karva. We therefore also implemented prefix translation.

4.2 Results

Figure 3 shows the results of an experiment using the parameter settings de-
tailed above, in which XCSF-GEP learned to approximate the tent landscape of
Figure 1. For both translation techniques, the error fell to nearly zero, with prefix
falling roughly twice as fast as Karva. Still, initial learning was slower than with
ordinary XCSF (also shown; relevant parameters the same as for XCSF-GEP).
However, XCSF’s error performance was markedly worse.

Evolved populations contained about 70 macroclassifiers [5] so that they had
definitely not reduced to the ideal of just two, one for each of the tent sides.
However, roughly half of the classifiers in a population were accurate and the
conditions of roughly half of those precisely covered a tent-side domain. Fig-
ure 4 shows the conditions of eight high-numerosity classifiers from four runs of
the experiment. The first and second pairs are from two runs in which Karva

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2000 4000 6000 8000 10000
Instances

XCSF-GEP Karva
XCSF-GEP prefix

XCSF

Fig. 3. XCSF-GEP system error vs. learning instances for tent landscape using Karva
and prefix translation. Also, system error for XCSF. (Averages of 20 runs).

214 S.W. Wilson

Chromosome Algebraic equivalent Domain

1. (- - * b > + b b b b a b b) b − (b + a)b a + b < 1
2. (* - * + / b b a b b b a b) ((a + b) − 1)b2 a + b > 1
3. (> - - / b + a a a a a b a) (1 − b) > a a + b < 1
4. (> b - > a / b b a b a b a) b > ((b/a > b) − a) a + b > 1

5. (> - * a / / b b a b a b a) (a(1/a) − b) > a a + b < 1
6. (- * * a / + b a b b a b a) a((b + a)/b)b − a a + b > 1
7. (- * a + * + b a b a a b a) ((b + a)b + a)a − a a + b > 1
8. (- - > / / + a b b b b b a) ((a + b)/b2 > b) − b − a a + b < 1

Fig. 4. Algebraic equivalents and domains of match for high-numerosity chromosomes
evolved in the experiment of Section 4. In 1-4, expression trees were formed by Karva
translation; in 5-8, by prefix translation.

translation was used; the runs for the third and fourth pairs used prefix transla-
tion. With each chromosome is shown the algebraic equivalent of its expression
tree, together with the domain in which that tree matched. The relation between
the algebra and the domain is: if and only if the inputs satisfy the domain ex-
pression, the algebraic expression will compute to a value greater than zero (i.e.,
the classifier matches).

Many of the expressions simplify easily. For instance if the first is prepended
to “> 0” (i.e., b − (b + a)b > 0), the result can be seen to be the same as the
domain expression. However, other algebraic expressions are harder to simplify,
and it seems clear that for interpretation of XCSF-GEP conditions in general,
automated editing is called for. Further, it was quite remarkable how many
different but correct algebraic expressions appeared in the total of forty runs
of the experiment. Even though many conditions evolved to precisely delineate
the two regularities of this environment, each of those regularities clearly has
a multitude of algebraic descriptions. XCSF-GEP was prolific in finding these,
but the evolutionary process, even in this simple problem, did not reduce them
to two, or even a small number.

5 Discussion and Conclusion

The experiment with the tent environment showed it was possible to use GEP
for the conditions of XCSF, but the learning was fairly slow and the evolved pop-
ulations were not compact. However, it was the case—fulfilling one of the main
objectives—that the high-numerosity classifiers, if somewhat obscurely, corre-
sponded precisely in their conditions to this environment’s oblique regularities.

Many questions ensue. On speed, it must be noted that the experimental sys-
tem did not use the full panoply of genetic operators, transposition in particular,
that are available in GEP, so that search was in some degree limited. Also, the
conditions did not have the multigenic structure that is believed important [8]

Classifier Conditions Using Gene Expression Programming 215

to efficiency. Nor was GEP’s facility for random numerical constants used; the
constants needed in the current problem were evolved algebraically, e.g., 1 = b/b.

The match threshold may matter for speed. If it is set too low, more classifiers
match, and in this sense the generality of all classifiers is increased. In effect,
the generality of an XCSF-GEP classifier is defined in relation to the match
threshold (which could conceivably be adaptive). Since over-generality leads to
error, too low a threshold will increase the time required to evolve accurate
classifiers. There is a substantial theory [3] of factors, including generality, that
affect the rate of evolution in XCS-like systems; it should be applicable here.

On compactness the situation is actually much improved by the fact that
regularity-fitting classifiers do evolve, in contrast to the poor fit of rectilinear classi-
fiers for all but rectilinear environments. Considerable work (e.g. [23,6,9,18,4]) ex-
ists on algorithms that reduce evolved populations down to minimal classifier sets
that completely and correctly cover the problem environment. If the population
consists of poorly fitting classifiers, the resulting minimal sets are not very small.
However, if, as with XCSF-GEP in this experiment, two classifiers are evolved that
together cover the environment, compaction methods should produce sets consist-
ing of just those two. Thus XCSF-GEP plus postprocessing compaction (plus con-
dition editing) should go quite far toward the goals of conciseness and transparency.
All this of course remains to be tested in practice.

In conclusion, defining classifier conditions using GEP appears from this initial
work to lead to a slower evolution than traditional rectilinear methods, but
captures and gives greater insight into the environment’s regularities. Future
research should include implementing more of the functionality of GEP, exploring
the effect of the match threshold, testing compaction algorithms, and extending
experiments to more difficult environments.

Acknowledgement

The author acknowledges helpful and enjoyable correspondence with Cândida
Ferreira.

References

1. Bull, L., O’Hara, T.: Accuracy-based neuro and neuro-fuzzy classifier systems. In:
Langdon, et al. (eds.) [12], pp. 905–911

2. Martin, V.: Kernel-based, ellipsoidal conditions in the real-valued XCS classifier
system. In: Beyer, H.-G., O’Reilly, U.-M., Arnold, D.V., Banzhaf, W., Blum, C.,
Bonabeau, E.W., Cantu-Paz, E., Dasgupta, D., Deb, K., Foster, J.A., de Jong,
E.D., Lipson, H., Llora, X., Mancoridis, S., Pelikan, M., Raidl, G.R., Soule, T.,
Tyrrell, A.M., Watson, J.-P., Zitzler, E. (eds.) GECCO 2005: Proceedings of the
2005 conference on Genetic and evolutionary computation, 25-29 June 2005, vol. 2,
pp. 1835–1842. ACM Press, Washington (2005)

3. Martin, V.: Rule-Based Evolutionary Online Learning Systems: A Principled Ap-
proach to LCS Analysis and Design. Springer, Berlin (2006)

216 S.W. Wilson

4. Butz, M.V., Lanzi, P.L., Wilson, S.W.: Function approximation with XCS: hyperel-
lipsoidal conditions, recursive least squares, and compaction. In: IEEE Transactions
on Evolutionary Computation (in press)

5. Butz, M.V., Wilson, S.W.: An Algorithmic Description of XCS. In: Lanzi, P.L.,
Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp.
253–272. Springer, Heidelberg (2001)

6. Dixon, P.W., Corne, D.W., Oates, M.J.: A ruleset reduction algorithm for the
XCS learning classifier system. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.)
IWLCS 2003. LNCS (LNAI), vol. 2661, pp. 20–29. Springer, Heidelberg (2003)

7. Ferreira, C.: Gene expression programming: a new algorithm for solving problems.
Complex Systems 13(2), 87–129 (2001)

8. Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Arti-
ficial Intelligence, 2nd edn. Springer, Germany (2006)

9. Fu, C., Davis, L.: A modified classifier system compaction algorithm. In: Langdon,
et al. (ed.) [12], pp. 920–925.

10. Holland, J.H., Reitman, J.S.: Cognitive systems based on adaptive algorithms.
In: Waterman, D.A., Hayes-Roth, F. (eds.) Pattern-directed Inference Systems.
Academic Press, New York (1978); Reprinted In: Fogel D.B.(ed.). Evolutionary
Computation. The Fossil Record. IEEE Press (1998) ISBN: 0-7803-3481-7

11. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

12. Langdon, W.B., Cantú-Paz, E., Mathias, K.E., Roy, R., Davis, D., Poli, R., Balakr-
ishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz,
A.C., Miller, J.F., Burke, E.K., Jonoska, N. (eds.): Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2002). Morgan Kaufmann, San
Francisco (2002)

13. Lanzi, P.L.: Extending the Representation of Classifier Conditions Part II: From
Messy Coding to S-Expressions. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon,
M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 1999), pp. 345–352. Morgan
Kaufmann, San Francisco (1999)

14. Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.): Learning Classifier Systems. From
Foundations to Applications. LNCS (LNAI), vol. 1813. Springer, Berlin (2000)

15. Lanzi, P.L., Wilson, S.W.: Using convex hulls to represent classifier conditions. In:
Keijzer, M., Cattolico, M., Arnold, D., Babovic, V., Blum, C., Bosman, P., Butz,
M.V., Coello, C.C., Dasgupta, D., Ficici, S.G., Foster, J., Hernandez-Aguirre, A.,
Hornby, G., Lipson, H., McMinn, P., Moore, J., Raidl, G., Rothlauf, F., Ryan,
C., Thierens, D. (eds.) GECCO 2006: Proceedings of the 8th annual conference
on Genetic and evolutionary computation, 8-12 July 2006, vol. 2, pp. 1481–1488.
ACM Press, Washington (2006)

16. Li, X., Zhou, C., Xiao, W., Nelson, P.C.: Prefix gene expression programming. In:
Rothlauf, F. (ed.) Late breaking paper at Genetic and Evolutionary Computation
Conference (GECCO 2005), Washington, D.C., USA, 25-29 June (2005)

17. Luke, S.: A comparison of bloat control methods for genetic programming. Evolu-
tionary Computation 14(3), 309–344 (2006)

18. Tamee, K., Bull, L., Pinngern, O.: Towards clustering with XCS. In: Thierens,
D., Beyer, H.-G., Bongard, J., Branke, J., Clark, J.A., Cliff, D., Congdon, C.B.,
Deb, K., Doerr, B., Kovacs, T., Kumar, S., Miller, J.F., Moore, J., Neumann, F.,
Pelikan, M., Poli, R., Sastry, K., Stanley, K.O., Stutzle, T., Watson, R.A., Wegener,
I. (eds.) GECCO 2007: Proceedings of the 9th annual conference on Genetic and

Classifier Conditions Using Gene Expression Programming 217

evolutionary computation, London, 7-11 July 2007, vol. 2, pp. 1854–1860. ACM
Press, New York (2007)

19. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computa-
tion 3(2), 149–175 (1995)

20. Wilson, S.W.: Get Real! XCS with Continuous-Valued Inputs. In: Lanzi, et al.
(eds.) [14], pp. 209–219

21. Wilson, S.W.: Function approximation with a classifier system. In: Spector, L.,
Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo,
M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001), 7-11 July 2001, pp. 974–
981. Morgan Kaufmann, San Francisco (2001)

22. Wilson, S.W.: Classifiers that approximate functions. Natural Computing 1(2-3),
211–233 (2002)

23. Wilson, S.W.: Compact rulesets from XCSI. In: Lanzi, P.L., Stolzmann, W., Wil-
son, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 196–208. Springer,
Heidelberg (2002)

24. Wilson, S.W.: Classifier systems for continuous payoff environments. In: Deb, K.,
Poli, R., Banzhaf, W., Beyer, H.-G., Burke, E., Darwen, P., Dasgupta, D., Floreano,
D., Foster, J., Harman, M., Holland, O., Lanzi, P.L., Spector, L., Tettamanzi,
A., Thierens, D., Tyrrell, A. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 824–835.
Springer, Heidelberg (2004)

25. Wilson, S.W.: Three architectures for continuous action. In: Kovacs, T., Llorà,
X., Takadama, K., Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2003.
LNCS (LNAI), vol. 4399, pp. 239–257. Springer, Heidelberg (2007)

Evolving Classifiers Ensembles with
Heterogeneous Predictors

Pier Luca Lanzi1,2, Daniele Loiacono1, and Matteo Zanini1

1 Artificial Intelligence and Robotics Laboratory (AIRLab),
Politecnico di Milano. P.za L. da Vinci 32, I-20133, Milano, Italy

2 Illinois Genetic Algorithm Laboratory (IlliGAL),
University of Illinois at Urbana Champaign,

Urbana, IL 61801, USA
lanzi@elet.polimi.it, loiacono@elet.polimi.it, mat.zanini@tiscali.it

Abstract. XCS with computed prediction, namely XCSF, extends XCS
by replacing the classifier prediction with a parametrized prediction func-
tion. Although several types of prediction functions have been intro-
duced, so far XCSF models are still limited to evolving classifiers with
the same prediction function. In this paper, we introduce XCSF with
heterogeneous predictors, XCSFHP, which allows the evolution of classi-
fiers with different types of prediction function within the same popula-
tion. We compared XCSFHP to XCSF on several problems. Our results
suggest that XCSFHP generally performs as XCSF with the most appro-
priate prediction function for the given problem. In particular, XCSFHP
seems able to evolve, in each problem subspace, the most adequate type
of prediction function.

1 Introduction

XCS with computed prediction [22], namely XCSF, extends the typical idea
of classifiers by replacing the prediction parameter with a prediction function
p(st,w). The prediction function, typically defined as a linear combination of
s and w, is used to compute the classifier prediction on the basis of the cur-
rent state st and a parameter vector w associated to each classifier. Since its
introduction, XCSF has been extended with several techniques for computing
the classifier prediction, ranging from polynomial functions [11] to Neural Net-
works [10] and Support Vector Machines [18]. However the experimental results
reported so far [12,10,18] suggest that none of such techniques outperforms the
others in every respect. In particular, as discussed in [10], a powerful predictor
may solve complex problems but may learn more slowly or be unnecessarily ex-
pensive in the simple ones. Therefore, the choice of the predictor to use in each
problem still requires human expertise and good knowledge of the problem. In
this paper we introduce XCSF with heterogeneous predictor, dubbed XCSFHP
that extends XCSF by evolving an ensemble of classifiers with different types of
prediction function. In XCSFHP, the predictors are not specified at design time,
instead the system is in charge of evolving the most adequate predictor for each
problem subspace.

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 218–234, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Evolving Classifiers Ensembles with Heterogeneous Predictors 219

The idea of evolving ensembles of classifiers has been widely studied in the
LCS research. Early examples include Dorigo and Colombetti [8] that used a
hierarchy of learning classifier systems for controlling an autonomous robot; a
similar approach has been used in [1,3] for modeling an economic process. More
recently, Llora and Wilson [16] proposed to evolve an ensemble of classifiers
with an heterogeneous knowledge representations. Finally, Bull et al. showed
in [5,4] that an ensemble of learning classifier systems may learn faster and more
reliably than a single one. Our work differs from the previous ones basically
in two respects: (i) previous works usually evolve classifiers of the same type
(e.g., [5,4]) or focus on different representations (e.g., [16]), while we propose a
framework for evolving an ensemble of classifiers with different predictor types;
(ii) previous frameworks usually deal with evolving an ensemble of complete
problem solutions, while our approach aims to find one problem solution by
evolving an ensemble of classifiers in each problem subspace.

2 The XCSF Classifier System

XCSF extends XCS in three respects [22]: (i) classifiers conditions are extended
for numerical inputs, as done for XCSI [21]; (ii) classifiers are extended with a
vector of weights w, that are used to compute classifier’s prediction; finally, (iii)
the weights w are updated instead of the classifier prediction.

2.1 Classifiers

In XCSF, classifiers consist of a condition, an action, and four main parameters.
The condition specifies which input states the classifier matches; it is represented
by a concatenation of interval predicates, int i = (li, ui), where li (“lower”) and ui

(“upper”) are reals (whereas in the original XCSF they were integers [22]). The
action specifies the action for which the payoff is predicted. The four parameters
are: the weight vector w, used to compute the classifier prediction as a function
of the current input; the prediction error ε, that estimates the error affecting
classifier prediction; the fitness F that estimates the accuracy of the classifier
prediction; the numerosity num, a counter used to represent different copies of
the same classifier. The weight vector w has one weight wi for each possible
input, and an additional weight w0 corresponding to a constant input x0, that
is set as a parameter of XCSF.

2.2 Performance Component

XCSF works as XCS. At each time step t, XCSF builds a match set [M] containing
the classifiers in the population [P] whose condition matches the current sensory
input st; if [M] contains less than θmna actions, covering takes place; covering is
controlled by the parameter r0 and it works as in XCSI [21,22] but considers real
values instead of integers. The weight vector w of covering classifiers is initialized
to zero; all the other parameters are initialized as in XCS.

220 P.L. Lanzi, D. Loiacono, and M. Zanini

For each action ai in [M], XCSF computes the system prediction. As in XCS,
in XCSF the system prediction of action a is computed by the fitness-weighted
average of all matching classifiers that specify action a. In contrast with XCS,
in XCSF classifier prediction is computed as a function of the current state st

and the classifier vector weight w. Accordingly, in XCSF system prediction is a
function of both the current state s and the action a. Following a notation similar
to [7], the system prediction for action a in state st, P (st, a), is defined as:

P (st, a) =

∑
cl∈[M]|a cl.p(st) × cl.F∑

cl∈[M]|a cl.F
(1)

where cl is a classifier, [M]|a represents the subset of classifiers in [M] with action
a, cl.F is the fitness of cl ; cl.p(st) is the prediction of cl in state st, which is
computed as:

cl.p(st) = cl .w0 × x0 +
∑
i>0

cl .wi × st(i)

where cl.w i is the weight wi of cl . The values of P (st, a) form the prediction array.
Next, XCSF selects an action to perform. The classifiers in [M] that advocate
the selected action are put in the current action set [A]; the selected action is
sent to the environment and a reward r is returned to the system together with
the next input state st+1.

2.3 Reinforcement Component

XCSF uses the incoming reward to update the parameters of classifiers in action
set [A]−1 corresponding to the previous time step, t − 1. At time step t, the
expected payoff P is computed as:

P = r−1 + γ max
a∈A

P (st, a) (2)

where r−1 is the reward received at the previous time step. The expected payoff
P is used to update the weight vector w of the classifier in [A]−1 using a modified
delta rule [19]. For each classifier cl ∈ [A]−1, each weight cl.w i is adjusted by a
quantity ∆wi computed as:

∆wi =
η

|st−1(i)|2
(P − cl.p(st−1))st−1(i) (3)

where η is the correction rate and |st−1|2 is the norm the input vector st−1, (see
[22] for details). The values ∆wi are used to update the weights of classifier cl
as:

cl.w i ← cl.w i + ∆wi (4)

Then the prediction error ε is updated as:

cl.ε ← cl.ε + β(|P − cl.p(st−1)| − cl.ε)

Finally, classifier fitness is updated as in XCS.

Evolving Classifiers Ensembles with Heterogeneous Predictors 221

2.4 Discovery Component

In XCSF, the genetic algorithm works as in XCSI [21]; in the version used here
the mutation of classifier conditions, controlled by parameter r0, is based on real
values as in [23] instead of integers as in [21].

3 XCSF with Heterogeneous Predictors

XCSF with Heterogeneous Predictors, dubbed XCSFHP, extends XCSF by
evolving classifiers with different predictors within the same population. To de-
velop XCSFHP, XCSF has to be modified basically in two respects: (i) when
a new classifier is created by the covering operator, the type of its prediction
function is randomly chosen among the available ones; (ii) the GA is applied
also to the prediction function of classifiers.

3.1 Covering Operator

Extending the covering operator in XCSFHP is straightforward: the predictor
type of the new classifier is randomly selected among the available functions.
Then the classifier predictor is initialized according to the type and the other
classifiers parameters are initialized as in XCSF.

3.2 Discovery Component

In XCSFHP, the genetic algorithm works basically as in XCSF but it is extended
also to the prediction function. The selected parent classifiers are copied and with
probability χ are recombined as in XCSF. In XCSFHP, after the usual mutation
operator is applied to the classifier condition and action, the type of classifier
predictor can be mutated, with probability µ, into a new one. In the offspring, the
predictor is initialized on the basis of the parent predictor. When the predictor
type is the same, i.e., no mutation occurred, the offspring simply inherits the
parent predictor. Otherwise the initialization depends on the predictor types
involved.

3.3 Predictor Ensembles

In principle, XCSFHP can evolve ensembles of classifiers with any type of predic-
tors. However, in this paper we focus on the two examples of predictor ensembles
described in the following.

Polynomial Prediction Functions. As the first predictors ensemble, we used
three polynomial prediction functions: a linear, quadratic and a cubic prediction
function [11]. Polynomial predictors compute the classifier prediction as a linear
combination between a parameter vector w and the input vector or an extended
input vector. In particular, the linear predictor has a parameter vector with one
weight wi for each possible inputs and an additional weight w0 corresponding

222 P.L. Lanzi, D. Loiacono, and M. Zanini

to a constant input x0. Quadratic predictor extends the input vector with one
quadratic term for each possible input. Accordingly also the weight vector is
extended with one new weight for each inputs introduced. Finally, cubic predictor
extends further the input vector and the weight vector adding cubic terms.

The initialization of the offspring predictor is straightforward. When the
parent predictor is a function with an higher degree, the offspring predictor
is initialized by copying the weight vector of the parent, ignoring the weights
corresponding to the higher degree inputs. In the opposite case, the weight vec-
tors is still copied and the new weights (i.e., the one corresponding to the higher
degree inputs) are initialized to zero.

Ensembles of Constant, Linear and Neural Predictors. The second en-
semble studied involves three really heterogeneous predictor types: (i) a constant
prediction, that is the one used in XCS; (ii) a linear prediction function, that is
the one used in XCSF; (iii) the neural prediction function, introduced in [10].

In this ensemble the initialization of the offspring predictors is straightforward
only when the types involved are the constant and the linear ones; in such case
the initialization is performed as previously described for the case of polynomial
predictors. When, instead, the neural predictors is involved, we followed a dif-
ferent approach: a training set is built by sampling the inputs matched by the
offspring and defining as target the corresponding outputs computed by the par-
ent predictor. Then such a set is used for training the offspring predictor. Notice
that this approach is very general and can be applied to manage any type of
predictors. On the other hand it might be computationally expensive, requiring
a data sampling and a complete training of the predictor. However in XCSFHP,
as in XCSF, the mutation operator is applied with a very low probability and
therefore does not affect so much the overall computational performance.

4 XCSFHP for Function Approximation

We compared XCSFHP to XCSF on several function approximation problems.
In the first set of experiments we focus on XCSFHP with ensembles involving
polynomial predictors, i.e. linear, quadratic and cubic predictors. In the second
set of experiments we study XCSFHP with the ensemble of predictors involving
constant, linear and neural predictors.

All the experiments discussed in this section follow the standard design used in
the literature [20,22]. In each experiment the system has to learn to approximate
a target function f(x); each experiment consists of a number of problems that
the system must solve. For each problem, an example 〈x, f(x)〉 of the target
function f(x) is randomly selected; x is input to the system, which computes
the approximated value f̂(x) as the expected payoff of the only available dummy
action; the action is virtually performed (the action has no actual effect), and
XCSF receives a reward equal to f(x). The system learns to approximate the
target function f(x) by evolving a mapping from the inputs to the payoff of
the only available action. Each problem is either a learning problem or a test
problem. In learning problems, the genetic algorithm is enabled; during test

Evolving Classifiers Ensembles with Heterogeneous Predictors 223

problems it is turned off. Classifier parameters are always updated. The covering
operator is always enabled, but operates only if needed. Learning problems and
test problems alternate.

The performance of the compared systems is measured as the average system
prediction error. In addition, we analyzed the size of the populations evolved as a
measure of the systems generalization capabilities. All the experiments reported
have been conducted on xcslib [9].

4.1 Experiments with Polynomial Predictors

In the first experiment we applied XCSFHP with polynomial predictors to the
approximation of the ffl function (see Figure 1a), defined as follows:

ftl(x) =
{

5x + 2 for x < 0.5
4.5 + 0.1 · (x − 0.5) for 0.5 ≤ x ≤ 1 (5)

We compared XCSFHP with the ensemble of polynomial predictors and three
versions of XCSF with a single type of predictor, that is respectively with linear
prediction, with quadratic prediction and with cubic prediction. Experiments
were performed with the following parameters setting: N = 200, β = 0.2, δ =
0.2, γ = 0.7, θGA = 50, χ = 0.8, µ = 0.04, ε0 = 0.01, ν = 5, α = 0.1, θdel

= 50, GA subsumption is on with θsub = 50; action-set subsumption is not
used; m0 = 0.5, r0 = 0.5 [22]; the classifier weight vector is updated using the
Recursive Least Squares, with δrls = 100 [15]. Figure 1c shows that all the three
polynomial predictors compared (linear, quadratic and cubic) perform almost in
the same way and so does XCSFHP. Figure 1d shows that in simple function,
as ftl function, all the predictors compared lead almost to the same population
size. However it is interesting to study what type of predictors have been evolved
by XCSFHP. To this purpose, Figure 1b shows the frequencies of the matching
classifiers types over the whole input space. In the first half of the input space
cubic and quadratic predictors are evolved more frequently than the linear ones,
especially near slope changing point, where high quadratic and cubic terms can
be exploited for providing a smooth approximation. Instead, in the second half
of the input space the target function is almost constant and high degree terms
of cubic and quadratic predictors may easily cause big prediction error; thus, the
linear predictors is evolved more frequently. In summary, on the approximation
of a simple function as ftl, all the polynomial predictors provide almost the same
performance and the same generalization capabilities. Nonetheless XCSFHP is
able to evolve a solution as accurate and compact as the one evolved by XCSF
with a single predictor type. In addition we also showed that XCSFHP evolved
with higher probability the predictors type most suitable for approximating the
target function in each subspace of the input domain.

In the second experiment we applied XCSF and XCSFHP systems to the more
complex function fabs (see Figure 2a) introduced in [11] and defined as follows:

fabs(x) = |sin(2πx) + |cos(2πx)|| (6)

224 P.L. Lanzi, D. Loiacono, and M. Zanini

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.2 0.4 0.6 0.8 1

f(
x)

x

ftl

(a)

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1

T
Y

P
E

 O
F

 P
R

E
D

IC
T

O
R

S
 E

V
O

LV
E

D

x

LINEAR PREDICTORS
QUADRATIC PREDICTORS

CUBIC PREDICTORS

(b)

 0

 0.005

 0.01

 0.015

 0.02

 0 10000 20000 30000 40000 50000

A
V

E
R

A
G

E
 P

R
E

D
IC

T
IO

N
 E

R
R

O
R

NUMBER OF LEARNING PROBLEMS

LINEAR
QUADRATIC

CUBIC
XCSFHP
ε0 = 0.01

(c)

0%

2%

4%

6%

8%

10%

 0 10000 20000 30000 40000 50000

N
U

M
B

E
R

 O
F

 M
A

C
R

O
C

LA
S

S
IF

IE
R

S
 (

%
 O

F
 N

)

NUMBER OF LEARNING PROBLEMS

LINEAR
QUADRATIC

CUBIC
XCSFHP

(d)

Fig. 1. XCSFHP and XCSF with linear, quadratic and cubic predictors applied to
ftl(x) function: (a) the target function, (b) frequencies of predictor types evolved, (c)
performance, and (d) population size. Curves are averages over 50 runs.

We used the same parameters setting of the previous experiment except for
N = 800. Figure 2c shows that all the systems evolve an accurate approximation,
but XCSF with linear prediction is slightly slower to converge than XCSF with
both quadratic and cubic predictors. On the other hand, XCSFHP converges as
fast as XCSF with quadratic and cubic predictors. For what concerns the gener-
alization capabilities, Figure 2d shows that XCSF with linear predictors evolves
a slightly bigger population, than XCSF with quadratic and cubic predictors.
Notice that XCSFHP evolves a population as compact as the ones evolved by
XCSF with quadratic and cubic predictors. It is worthwile to see what type
of predictors are evolved by XCSFHP. Figure 2b shows the frequencies of the
three predictor types evolved over the whole input domain. As expected, the cu-
bic and quadratic predictors are more frequently evolved being the most suitable
for approximating the target function as previously showed by the analysis of the
performance and the generalization. In particular it is interesting to underline
that the linear predictors are almost always not present in the final population,
except for a few ones evolved for x > 0.6, where linear approximator can be
exploited for approximating accurately the slope of the target function.

In conclusion, XCSFHP performs almost as XCSF with the most suitable
predictor both in terms of prediction accuracy and generalization capability.

Evolving Classifiers Ensembles with Heterogeneous Predictors 225

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1

f(
x)

x

fabs

(a)

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1

T
Y

P
E

 O
F

 P
R

E
D

IC
T

O
R

S
 E

V
O

LV
E

D

x

LINEAR PREDICTORS
QUADRATIC PREDICTORS

CUBIC PREDICTORS

(b)

 0

 0.025

 0.05

 0.075

 0.1

 0 20000 40000 60000 80000 100000

A
V

E
R

A
G

E
 P

R
E

D
IC

T
IO

N
 E

R
R

O
R

NUMBER OF LEARNING PROBLEMS

LINEAR
QUADRATIC

CUBIC
XCSFHP
ε0 = 0.01

(c)

0%

2%

4%

6%

8%

10%

 0 20000 40000 60000 80000 100000

N
U

M
B

E
R

 O
F

 M
A

C
R

O
C

LA
S

S
IF

IE
R

S
 (

%
 O

F
 N

)

NUMBER OF LEARNING PROBLEMS

LINEAR
QUADRATIC

CUBIC
XCSFHP

(d)

Fig. 2. XCSFHP and XCSF with linear, quadratic and cubic predictors applied to
fabs(x) function: (a) the target function, (b) frequencies of predictor types evolved, (c)
performance, and (d) population size. Curves are averages over 50 runs.

Altough so far we applied XCSFHP to very simple experiments, our results
suggested that XCSFHP is capable of evolving the most appropriate predictor
type for each subspace of the input domain.

4.2 Experiments with Constant, Linear and Neural Predictors

We now move to the analysis of XCSFHP with constant, linear and neural predic-
tors ensemble. In the first experiments we compared XCSFHP to three XCSF
versions respectively with constant, linear and neural predictors. Notice that
XCSF with constant predictors turns out to be equal to XCSI [21] and XCSF
with neural predictor has been introduced in [10] as XCSFNN.

In the first experiment we compared XCSFHP to the XCSF systems on the
approximation of the f3 function [6] defined as,

f3(x1, x2) = sin (2π(x1 + x2)). (7)

The parameters are set according to [6] as follows: N = 2000, β = 0.5, δ = 0.5,
γ = 0.9 θGA = 50, χ = 1.0, µ = 0.05, ε0 = 0.01, ν = 5, α = 0.1, θdel = 20, GA
subsumption is on with θsub = 20; action-set subsumption is not used; m0 = 1.0,
r0 = 0.5 [22]. Figure 3 compares the performances, in terms of predictive accu-

226 P.L. Lanzi, D. Loiacono, and M. Zanini

 0

 0.025

 0.05

 0.075

 0.1

 0 30000 60000 90000 120000 150000

A
V

E
R

A
G

E
 P

R
E

D
IC

T
IO

N
 E

R
R

O
R

NUMBER OF LEARNING PROBLEMS

LINEAR
NEURAL
XCSFHP
ε0 = 0.01

(a)

0%

10%

20%

30%

40%

50%

 0 30000 60000 90000 120000 150000

N
U

M
B

E
R

 O
F

 M
A

C
R

O
C

LA
S

S
IF

IE
R

S
 (

%
 O

F
 N

)

NUMBER OF LEARNING PROBLEMS

LINEAR
NEURAL
XCSFHP

(b)

Fig. 3. XCSFHP compared to XCSF with constant, linear and neural network pre-
dictors on the approximation of f3(x1, x2): (a) performance and (b) population size.
Curve are averaged over 20 runs.

racy (Figure 3a) and generalization capability (Figure 3b), of the four systems
studied. Figure 3a shows that XCSF is able to evolve an accurate solution only
with neural predictors (XCSF with constant predictors, not reported in the fig-
ure, reaches an average system error of approximately 0.2). It is worthwhile
to say that XCSFHP is not only able to evolve an accurate solution but also
converge toward it almost as fast as XCSF with neural predictors. Figure 3b
compares the size of the populations evolved by the system compared. XCSF
with neural predictors is able to evolve a more compact population than XCSF
with linear prediction. Again, XCSFHP evolves a population almost as compact
as XCSF with neural predictors. To understand how XCSFHP is able to evolve
an accurate and compact solution, we analyzed the type of predictors evolved
over the input space. Figure 4 shows that XCSFHP mainly evolved neural pre-
dictors being the most suitable type of predictor for approximating accurately
the target function. Is interesting to note that (see Figure 4c) XCSFHP also
evolves linear predictors in two regions of the input space: when both x1 and x2
approach to 0 and, especially, when they both approach to 1. In such regions, in
fact, the target function can be effectively approximated with a linear function.

In the second experiment we applied XCSFHP and the XCSF systems to the
the four variable function f4(x1, x2, x3, x4) [6], defined as

f4(x1, x2, x3, x4) = x2 + x4 + 2π sinx1 + 2π sin x3, (8)

with the same parameters setting of the previous experiment.
Figure 5a compares the performances of XCSFHP, XCSF with linear and

with neural predictors. XCSF with constant predictors (not reported in the fig-
ure) converges to an average prediction error around to 0.3. On the function f4
XCSF with linear predictors is not only able to evolve an accurate solution but
converges also faster than XCSF with neural predictors. As discussed in [17],
this result is due to the fact that in the f4 function the variables contributions
are linearly separable. It is interesting to note that, also in this case, XCSFHP

Evolving Classifiers Ensembles with Heterogeneous Predictors 227

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−1

−0.5

0

0.5

1

XY

f 3(x
,y

)

(a) (b)

(c) (d)

Fig. 4. Frequencies of the predictors types evolved by XCSFHP applied to f3(x1, x2):
(a) the target function, (b) constant predictors, (c) linear predictors, (d) neural pre-
dictors

 0

 0.025

 0.05

 0.075

 0.1

 0 30000 60000 90000 120000 150000

A
V

E
R

A
G

E
 P

R
E

D
IC

T
IO

N
 E

R
R

O
R

NUMBER OF LEARNING PROBLEMS

LINEAR
NEURAL
XCSFHP
ε0 = 0.01

(a)

0%

10%

20%

30%

40%

50%

 0 30000 60000 90000 120000 150000

N
U

M
B

E
R

 O
F

 M
A

C
R

O
C

LA
S

S
IF

IE
R

S
 (

%
 O

F
 N

)

NUMBER OF LEARNING PROBLEMS

LINEAR
NEURAL
XCSFHP

(b)

Fig. 5. XCSFHP compared to XCSF with constant, linear and neural network pre-
dictors on the approximation of f4(x1, x2, x3, x4): (a) performance and (b) population
size. Curve are averaged over 20 runs.

228 P.L. Lanzi, D. Loiacono, and M. Zanini

is able to exploit the most appropriate predictors type and to converge almost
as fast as XCSF with the best predictor for the function f4 that is the linear
one. Concerning the generalization capabilities, Figure 5b shows the size of the
populations evolved by the systems. Notice that, although neural predictors are
slower, they let XCSF evolve a more compact solution than linear ones. On the
other hand XCSFHP evolves a solution not as compact as XCSF with neural
predictors, but it is also able to exploit some neural predictors resulting in pop-
ulation smaller than the one evolved with linear predictors. In this case it is not
possible to show the type of predictor evolved in each region of the input space
due to its high dimensionality. However, XCSFHP evolved overall the 77.1%
of linear predictors, the 22.8% of neural predictors, and the 0.1% of constant
predictors. This confirms our previous discussions.

In summary we showed that XCSFHP performances are almost always compa-
rable with the one of XCSF with the best predictor. This is due to the capability
of XCSFHP to evolve autonomously the most appropriate predictor type in each
subspace of the input domain.

5 XCSFHP on Multistep Problems

So far, we studied the XCSFHP when applied to function approximation prob-
lems. Now we apply XCSFHP to multistep problems, following the standard ex-
perimental design used in the literature [20,13,14]. In this set of experiments we
used only ensembles involving polynomial predictors. In fact, it is well known [2],
that complex predictors, like neural predictors, might not converge when applied
to multistep problems.

5.1 2D Continuous Gridworld

In first experiments, we applied XCSFHP to a class of real valued multistep en-
vironments, the 2D Continuous Gridworld [2]. The empty continuous gridworld,

 20

 25

 30

 35

 40

 0 800 1600 2400 3200 4000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

LINEAR
QUADRATIC

CUBIC
XCSFHP

OPTIMUM

(a)

 0

 20

 40

 60

 80

 0 4000 8000 12000 16000 20000

N
U

M
B

E
R

 O
F

 M
A

C
R

O
C

LA
S

S
IF

IE
R

S
 (

%
 O

F
 N

)

NUMBER OF LEARNING PROBLEMS

LINEAR
QUADRATIC

CUBIC
XCSFHP

(b)

Fig. 6. XCSFHP and XCSF with linear, quadratic and cubic predictors applied to
Grid(0.05): (a) performance and (b) population size. Curves are averaged over 10
runs.

Evolving Classifiers Ensembles with Heterogeneous Predictors 229

(a) (b)

(c) (d)

Fig. 7. Frequencies of predictor types evolved by XCSFHP: (a) the optimal value
function of Grid(0.05), (b) linear predictors, (c) quadratic predictors, and (d) cubic
predictors. Statistics are averaged over 10 runs.

Grid(s) in brief, is a two dimensional environments in which the current state
is defined by a pair of real valued coordinates 〈x, y〉 in [0, 1]2, the only goal is
in position 〈1, 1〉, and there are four possible actions (left, right, up, and down)
coded with two bits. Each action corresponds in a step of size s in the corre-
sponding direction; actions that would take the system outside the domain [0, 1]2

take the system to the nearest position of the grid border. The system can start
anywhere but in the goal position and it reaches the goal position when both
coordinates are equal or greater than one. When the system reaches the goal it
receives a reward of 0, in all the other cases it receives -0.5. The performance is
computed as the average number of steps needed to reach goal or food positions
during the last 100 test problems. Given the step-size s, the optimal number of
steps to reach the goal in Grid(s) is in the average equal to (s+1)/s [20,13]. In
this paper we set s = 0.05 a rather typical value used in the literature [20,13].

In the first experiments we applied XCSFHP with polynomial predictors and
XCSF with linear, quadratic and cubic predictors to Grid(0.05) with the fol-
lowing parameter setting. N = 5000, β = 0.2, δ = 0.2, γ = 0.95 θGA = 50, χ =

230 P.L. Lanzi, D. Loiacono, and M. Zanini

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

y

1

1

Goal

x0
0

Fig. 8. The Puddles(s) problem. The goal is placed in 〈1, 1〉. Gray zones represent the
“puddles”.

 20

 25

 30

 35

 40

 0 1200 2400 3600 4800 6000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

LINEAR
QUADRATIC

CUBIC
XCSFHP

(a)

 0

 20

 40

 60

 80

 0 4000 8000 12000 16000 20000

N
U

M
B

E
R

 O
F

 M
A

C
R

O
C

LA
S

S
IF

IE
R

S
 (

%
 O

F
 N

)

NUMBER OF LEARNING PROBLEMS

LINEAR
QUADRATIC

CUBIC
XCSFHP

(b)

Fig. 9. XCSFHP and XCSF with linear, quadratic and cubic predictors applied to
Puddles(0.05): (a) performance and (b) population size. Curves are averaged over 10
runs.

0.8, µ = 0.04, ε0 = 0.005, ν = 5, α = 0.1, θdel = 50, GA subsumption is on with
θsub = 50; action-set subsumption is not used; m0 = 0.5, r0 = 0.5 [22]. Figure 6a
compares the performances of XCSFHP and of XCSF with different predictors.
All the systems compared converge toward an optimal solution, but XCSF with
linear predictor learns slower than XCSF with quadratic and cubic predictors.
On the other hand XCSFHP converges as fast as XCSF with quadratic pre-
dictors and it is only slightly slower than XCSF with cubic predictors. When
considering the size of the evolved population, reported in Figure 6b, all the sys-
tems seems to perform the same. As we did in previous problems, we analyzed
the type of predictors evolved by XCSFHP over the problem space, reported in
Figure 7. As expected from the previous results, XCSFHP evolves mainly cubic

Evolving Classifiers Ensembles with Heterogeneous Predictors 231

(a) (b)

(c) (d)

Fig. 10. Frequencies of predictor types evolved by XCSFHP: (a) the optimal value
function of Puddles(0.05), (b) linear predictors, (c) quadratic predictors, and (d) cubic
predictors. Statistics are averaged over 10 runs.

predictors, that are more than the 80% of the all predictors evolved. Almost all
the rest are quadratic predictors and only few linear predictors are evolved near
the goal position. The results confirm what found in previous experiments on
function approximation problems: XCSFHP evolves with higher probability the
more appropriate predictors for solving the problem, i.e. the ones that allows
XCSFHP to converge faster toward the optimal solution.

5.2 2D Continuous Gridworld with Puddles

In the second set of experiments we move to a slightly more complex problem,
that is the 2D Continuous Gridworld with Puddles, Puddles(s) in brief. This
problem adds some obstacles to 2D Continuous Gridworld, defined as areas in-
volving an additional cost for moving. These areas are called “puddles” [2], since
they actually create a sort of puddle in the optimal value function. We used the
same experimental design followed in [13]. Figure 8 shows the Puddles(s) en-
vironment. In this paper we set s = 0.05, a rather typical value in the literature.
Moving through a puddle results in an additional negative reward of -2; in the

232 P.L. Lanzi, D. Loiacono, and M. Zanini

area where the two puddles overlap, the darker gray region, the negative rewards
sum up, i.e., the additional negative reward is -4.

Figure 9 shows that all the systems compared have almost the same perfor-
mance and evolve almost the same number of macroclassifiers. The optimal value
function of the Puddles(0.05), reported in Figure 10a, does not allow the same
generalization of the previous Grid(0.05) problem. Therefore the performance
of XCSF with different predictors are very close. It is worthwhile to analyze
what type of predictor does XCSFHP evolve over the problem space. Figure 10
shows that XCSFHP evolves prevalently cubic predictors, especially in the more
critical region, i.e., the ones with the puddles; the number of evolved quadratic
predictors is higher away from the puddles; a small number of linear predictor
is also evolved only near the goal position, where the optimal value function has
an almost linear slope.

6 Conclusions

In this paper, we introduced XCSF with heterogeneous predictors, namely
XCSFHP, that extends XCSF by evolving classifiers with different type of predic-
tors. Our approach differs from previous works on classifiers ensembles basically
in two respects: (i) previous works usually evolve classifiers of the same type or
focus on classifier representation, while we evolve classifiers with different type
of predictors; (ii) previous works usually involve many populations or many sys-
tems, while we deal with evolving different type of classifiers in the same popula-
tion. In order to investigate the capabilities of XCSFHP, we applied it to several
problems. In principle, within XCSFHP it is possible to evolve classifiers with
any type of predictors. However in the experimental analysis presented in this
paper we focused on (i) ensembles involving polynomial predictors, i.e., linear,
quadratic and cubic and on (ii) ensembles involving constant, linear and neural
predictors. We compared XCSFHP to XCSF with a given type of predictor on
several function approximation and multistep problems. Our results suggest that
XCSFHP performs almost as XCSF with the best predictor type. In addition,
the analysis of the type of predictors evolved by XCSFHP shows that it evolves
the most appropriate type of predictor for each problem subspace, without any
human intervention. Finally, relying on more than a single predictor type for
solving a problem, we can also expect XCSFHP to be more robust than XCSF,
even if further investigations in this direction are necessary.

References

1. Bagnall, A.J., Smith, G.D.: Using an Adaptive Agent to Bid in a Simplified Model
of the UK Market in Electricity. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 1999), p. 774 (1999); One page poster paper

2. Boyan, J.A., Moore, A.W.: Generalization in reinforcement learning: Safely ap-
proximating the value function. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.)
Advances in Neural Information Processing Systems 7, pp. 369–376. MIT Press,
Cambridge (1995)

Evolving Classifiers Ensembles with Heterogeneous Predictors 233

3. Bull, L.: On using ZCS in a Simulated Continuous Double-Auction Market. In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
1999), pp. 83–90 (1999)

4. Bull, L., Studley, M., Bagnall, A., Whittley, I.: Learning classifier system ensembles
with rule-sharing. IEEE Transactions on Evolutionary Computation 11(4), 496–502
(2007)

5. Bull, L., Studley, M., Bagnall, T., Whittley, I.: On the use of rule-sharing in learning
classifier system ensembles. In: The 2005 IEEE Congress on Evolutionary Compu-
tation, 2005, vol. 1, pp. 612–617 (2005)

6. Butz, M.V.: Kernel-based, ellipsoidal conditions in the real-valued XCS classifier
system. In: Beyer, H.-G., O’Reilly, U.-M., Arnold, D.V., Banzhaf, W., Blum, C.,
Bonabeau, E.W., Cantu-Paz, E., Dasgupta, D., Deb, K., Foster, J.A., de Jong,
E.D., Lipson, H., Llora, X., Mancoridis, S., Pelikan, M., Raidl, G.R., Soule, T.,
Tyrrell, A.M., Watson, J.-P., Zitzler, E. (eds.) GECCO 2005: Proceedings of the
2005 conference on Genetic and evolutionary computation, 25-29 June 2005, vol. 2,
pp. 1835–1842. ACM Press, Washington (2005)

7. Butz, M.V., Wilson, S.W.: An Algorithmic Description of XCS. In: Lanzi, P.L.,
Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp.
253–272. Springer, Heidelberg (2001)

8. Dorigo, M., Colombetti, M.: Robot Shaping: An Experiment in Behavior Engineer-
ing. MIT Press/Bradford Books (1998)

9. Lanzi, P.L.: The XCS library (2002), http://xcslib.sourceforge.net
10. Lanzi, P.L., Loiacono, D.: XCSF with neural prediction. In: Evolutionary Compu-

tation, 2006. CEC 2006. IEEE Congress on, pp. 2270–2276 (2006)
11. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Extending XCSF beyond

linear approximation. In: Genetic and Evolutionary Computation – GECCO-2005,
pp. 1859–1866. ACM Press, Washington (2005)

12. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: XCS with computed pre-
diction for the learning of boolean functions. In: Proceedings of the IEEE Congress
on Evolutionary Computation – CEC-2005, Edinburgh, UK, September 2005, pp.
588–595. IEEE, Los Alamitos (2005)

13. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: XCS with computed
prediction in continuous multistep environments. In: Proceedings of the IEEE
Congress on Evolutionary Computation – CEC-2005, Edinburgh, UK, September
2005, pp. 2032–2039. IEEE, Los Alamitos (2005)

14. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: XCS with computed
prediction in multistep environments. In: GECCO 2005: Proceedings of the 2005
conference on Genetic and evolutionary computation, pp. 1859–1866. ACM Press,
New York (2005)

15. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Generalization in the
XCSF classifier system: Analysis, improvement, and extension. Evolutionary Com-
putation 15(2), 133–168 (2007)

16. Llora, X., Wilson, S.W.: Mixed decision trees: Minimizing knowledge representation
bias in LCS. In: Deb, K., Poli, R., Banzhaf, W., Beyer, H.-G., Burke, E.K., Darwen,
P.J., Dasgupta, D., Floreano, D., Foster, J.A., Harman, M., Holland, O., Lanzi,
P.L., Spector, L., Tettamanzi, A., Thierens, D., Tyrrell, A.M. (eds.) GECCO 2004.
LNCS, vol. 3103, pp. 797–809. Springer, Heidelberg (2004)

17. Loiacono, D., Lanzi, P.L.: Evolving neural networks for classifier prediction with
XCSF. In: Proceedings of the Second Italian Workshop on Evolutionary Compu-
tation, ISSN 1970–5077 (2006)

http://xcslib.sourceforge.net

234 P.L. Lanzi, D. Loiacono, and M. Zanini

18. Loiacono, D., Marelli, A., Lanzi, P.L.: Support vector regression for classifier pre-
diction. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pp. 1806–1813. ACM Press, New York (2007)

19. Widrow, B., Hoff, M.E.: Neurocomputing: Foundation of Research. In: Adaptive
Switching Circuits, pp. 126–134. MIT Press, Cambridge (1988)

20. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computa-
tion 3(2), 149–175 (1995)

21. Wilson, S.W.: Mining Oblique Data with XCS. In: Proceedings of the International
Workshop on Learning Classifier Systems (IWLCS-2000), in the Joint Workshops
of SAB 2000 and PPSN 2000, pp. 158–174 (2000)

22. Wilson, S.W.: Classifiers that approximate functions. Journal of Natural Comput-
ing 1(2-3), 211–234 (2002)

23. Wilson, S.W.: Classifier systems for continuous payoff environments. In: Deb, K.,
et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 824–835. Springer, Heidelberg
(2004)

Substructural Surrogates for Learning
Decomposable Classification Problems

Albert Orriols-Puig1,2, Kumara Sastry2,
David E. Goldberg2, and Ester Bernadó-Mansilla1

1Grup de Recerca en Sistemes Intel·ligents, Enginyeria i Arquitectura La Salle,
Universitat Ramon Llull, Quatre Camins 2, 08022 Barcelona (Spain)

2Illinois Genetic Algorithms Laboratory, Department of Industrial and Enterprise
Systems Engineering, University of Illinois at Urbana-Champaign
aorriols@salle.url.edu, ksastry@uiuc.edu, deg@uiuc.edu,

esterb@salle.url.edu

Abstract. This paper presents a learning methodology based on a sub-
structural classification model to solve decomposable classification prob-
lems. The proposed method consists of three important components:
(1) a structural model, which represents salient interactions between
attributes for a given data, (2) a surrogate model, which provides a
functional approximation of the output as a function of attributes, and
(3) a classification model, which predicts the class for new inputs. The
structural model is used to infer the functional form of the surrogate.
Its coefficients are estimated using linear regression methods. The clas-
sification model uses a maximally-accurate, least-complex surrogate to
predict the output for given inputs. The structural model that yields an
optimal classification model is searched using an iterative greedy search
heuristic. Results show that the proposed method successfully detects
the interacting variables in hierarchical problems, groups them in link-
ages groups, and builds maximally accurate classification models. The
initial results on non-trivial hierarchical test problems indicate that the
proposed method holds promise and also shed light on several improve-
ments to enhance the capabilities of the proposed method.

1 Introduction

Nearly decomposable functions play a central role in the design, analysis, and
modeling of complex engineering systems [28,6,8]. A design decomposition prin-
ciple has been proposed for the successful design of scalable genetic algorithms
(GAs) [8,18,20], genetic programming [25], and learning classifier systems and
genetics based machine learning (GBML) [4,16]. For example, in [4], estima-
tion of distribution algorithms (EDAs) were applied over the rule-based knowl-
edge evolved by XCS [32,33] to discover linkages between the input variables,
permitting XCS to solve hierarchical problems that were intractable with first-
generation XCS.

Nonetheless, previous approaches used the probabilistic models built by
EDAs—GAs that replace variation operators by building and sampling
probabilistic models of promising solution—for recombination. However, the

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 235–254, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

236 A. Orriols-Puig et al.

probabilistic models can also be used to induce the form of surrogates which
can be used for efficiency enhancement of GAs [27,19,26] and GBML [17]. In
this paper, we use the substructural surrogates for learning from decomposable
problems with nominal attributes. Similar to Sastry, Lima, and Goldberg [26],
we use the structural model of EDAs to induce the form of the surrogate and
linear regression for estimating the coefficients of the surrogate. The surrogate
is subsequently used to predict the class of unknown input instances.

In this paper, we discuss the critical components of the proposed methodol-
ogy and outline several ways to implement it. We then propose a greedy search
heuristic for discovering the structural model that minimizes the test error of the
classification model constructed from it. We address this method as greedy Ex-
traction of the Structural Model for Classification (gESMC). We artificially design
a set of hierarchical problems by means of concatenating essential blocks whose
output, provided by a boolean function, serves as the input of another function
that determines the global output of the example. Thus, these problems may be
decomposed and essential blocks should be correctly processed to predict the cor-
rect output. gESMC is able to detect the interactions between variables and build
accurate classification models. Moreover, the system is compared to C4.5 and
SMO. The comparison highlights that extracting the problem structure is essen-
tial to solve hierarchical problems. Finally, we review the limitations of applying
a greedy search to obtain the best structural model, show in which circumstances
these limitations may appear, and propose approaches to overcome them.

The paper is organized as follows. Section 2 discusses the proposed method-
ology followed by a description of gESMC. The test problems designed and used
in this study are discussed in Sect. 4. Section 5 compares the results of gESMC
with C4.5 and SMO on the hierarchical problems. Section 6 discusses some en-
hancements that are yet to be investigated. Section 7 provides summary and
conclusions.

2 Methodology for Learning χ-Ary Input Problems

In this section, we discuss a methodology for learning the structural and the
classification model from a set of labeled examples. The methodology consists of
three layers: (1) the structural model layer , (2) the surrogate model layer , and (3)
the classification model layer . The structural model layer extracts the dependen-
cies between the attributes of the examples in the dataset. These dependencies
can be expressed in form of linkage groups [9,10], matrices [35], or Bayesian net-
works [18]. However the dependencies are represented, the key idea is that the
salient interactions between attributes are used as a basis for determining the
output. The surrogate model layer uses the structural model to infer the func-
tional form of the surrogate, and the coefficients of the surrogate are determined
using linear regression methods. The resulting surrogate is a function that ap-
proximates the output of each input instance. Finally, the classification model
layer uses the surrogate function to predict the class of new input instances.

In essence, we infer the structure of the surrogate from the structural models
of attribute interactions and then use linear regression methods to estimate

Substructural Surrogates for Learning Decomposable Classification Problems 237

the value of the coefficients (or the partial contributions of subsolutions to the
output) of the resulting surrogate function. Finally the surrogate is used to
predict the class of new input instances. Details of each of the three components
are discussed in the following sections.

2.1 Structural Model Layer

The structural model layer is responsible for identifying salient interactions be-
tween attributes, which need to be processed together to determine their contri-
bution to the output. For example, consider a problem with two binary attributes
(x1, x2) and whose output is determined by the x-or boolean function. If we con-
sidered each of the attributes independently, we cannot evolve a function that
computes the output accurately for all possible inputs. However, when we con-
sider the two attributes together, we can easily create a function that accurately
predicts the output for all possible input sequences.

A number of linkage-learning methods [8] can be used to implement the struc-
tural model layer. Here, we use estimation of distribution algorithms (EDAs)
[18,20], which learn the salient interactions between decision variables by build-
ing probabilistic models of promising candidate solutions. These probabilistic
models can be expressed in different forms such as (i) linkage groups [9,10], i.e.,
groups of variables that have a salient interaction; matrices [35], which express
the relationship between pairs or groups of variables, permitting to detect over-
laps in the groups of interacting variables; or Bayesian networks [18], in which
the nodes represent variables and the connections denote salient interactions be-
tween variables. The implementation proposed in the next section uses linkage
groups to express the salient interactions, although it can be extended to other
representations.

In the realm of learning classifier systems (LCSs) or genetics-based machine
learning (GBML), EDAs have been successfully combined with LCSs to extract
the linkages between classifiers’ alleles [4,16,17]. However, unlike previous studies
which used the structural model as a replacement of recombination, in this study
we integrate the structural model and learning with the use of substructural
surrogates.

In order to achieve this integration, the first step is to find the structural
model of the given data. This can be done in several ways. As with EDAs, given
a class of permissible structural models, we can search for the best structural
model. Prior and domain-specific knowledge can also be used to propose the
structural model, and a search mechanism could be used to refine it [1]. In this
study we use a greedy search heuristic that searches for the model structure
that results in the most accurate surrogate model, details of which are given in
Section 3.

2.2 Surrogate Model Layer

The surrogate model layer preprocesses the input examples according to the
structural model and builds a regression model from these preprocessed exam-
ples, as described in [26]. In this section we summarize the procedure of building

238 A. Orriols-Puig et al.

such a surrogate. Consider a matrix D of dimension n × that contains all the
input examples (where n is the number of examples and the number of at-
tributes). Once the structural model is built, every linkage group is treated as
a building block [11]. Then, we consider all possible input combinations within
each linkage group to process the input examples.

For example, consider the following structural model of a binary problem of 3
variables: {[x1, x3], [x2]}. That is, there is salient interaction between variables x1
and x3, which are independent from the variable x2. In this case, we consider the
following schemata: {0*0, 0*1, 1*0, 1*1, *0*, *1*}. In general, given m linkage
groups, the total number of schemata msch to be considered is given by:

msch =
m∑

i=1

[
Πki

j=1χi,j

]
, (1)

where χi,j is the alphabet cardinality of the jth variable of the ith linkage group,
and ki is the size of the ith linkage group.

Then, each example in D is mapped to a vector of size msch, creating the
matrix A of dimensions n × msch:

A =

⎛⎜⎜⎜⎝
a1,1 a1,2 · · · a1,msch

a2,1 a2,2 · · · a2,msch

...
...

. . .
...

an,1 an,2 · · · an,msch

⎞⎟⎟⎟⎠ , (2)

where ai,j will have value ’1’ if the ith example belongs to the jth schemata, and
’0’ otherwise. Note that, given an example, only one of the schemata for each
linkage group can have value ’1’.

We map different labels or classes of the examples to numeric values. For
example: {class1, class2, · · · , classk} −→ {Z1, Z2, · · · , Zk}. The label or class ci

of each example is also kept in a matrix C of dimensions n × 1:

C =
(
c1 c2 · · · cn

)τ
. (3)

Now, the task of designing the surrogate can be formulated into a linear system
of equations and our objective is to compute the coefficients of the matrix x of
dimensions msch × 1 that satisfy the following equality:

Ax = C. (4)

In practice, we may not find an x that satisfies this expression. For this reason,
we use a multi-dimensional least squares fitting approach. That is, the problem is
reformulated by estimating the vector of coefficients x that minimize the square
error function χ:

χ2 = (Ax − C)T · (Ax − C) . (5)

The problem of least-squares fitting is well-known, and so we do not provide
insight in the resolution methodology herein. The interested reader is referred to
[5,23]. Here, we used the multi-dimensional least squares fitting routine available
with Matlab [24].

Substructural Surrogates for Learning Decomposable Classification Problems 239

2.3 Classification Model Layer

Once we obtain the matrix x with the regression coefficients, the output for a
new example is computed as follows. The example is mapped to a vector �e of
size msch. The mapping procedure used is identical to that used to create matrix
A and as outlined in the previous section, the elements of �e will have a value ’1’
if the example belongs to the corresponding schemata and ’0’ otherwise. Then,
the predicted output is given by:

output = �e · x. (6)

Note that the output is a continuous value, and has to be transformed to one
of the possible class labels. Therefore, we convert the continuous output to the
closer integer Zi in {Z1, Z2, · · · , Zk}, and then, return the class label that cor-
responds to Zi.

In essence, the proposed method relies on the structural and the surrogate
models extracted from the data to build the classification model. Therefore, we
note that if this structural model does not reflect the variable interactions accu-
rately, the accuracy of the classification model will be limited. Thus, a critical
task for the success of the proposed methodology is our ability to find reasonably
accurate structural models. In the next section we propose an implementation
of the methodology that searches iteratively for the best structural model, and
uses the classification model to evaluate its quality. We call this implementation
greedy extraction of the structural model for classification (gESMC).

3 Implementing the Methodology: gESMC

The pseudocode of the implementation of our proposed method is shown in
Algorithm 1. In the initialization stage, the algorithm divides the data into
training and test sets. We start with a structural model where all variables are
treated as independent and build a surrogate function via regression over the
training set as explained in the previous section (see Section 2.2). The quality of
the classification model is evaluated with the test set and stored in the variable
mdl.

Similar to the extended compact genetic algorithm (eCGA) [10], in gESMC
we use a greedy search heuristic to partition the set of attributes into non-
overlapping clusters such that the classification error is (locally) minimized. That
is, starting from a model where variables are treated as independent, we continue
to merge substructures till either (1) the mdl measure becomes less than a user
set threshold θ, or (2) the search produces no improvement. In every iteration of
the inner loop (lines 10 to 13), we merge two linkage groups from the current best
model, create the surrogate and the classification model, and evaluate it. That is,(
m
2

)
new structural models are formed (where m is the number of substructures

in the current best model), and their surrogate functions created and evaluated.
Among the evaluated

(
m
2

)
models, the one with the lowest classification error is

chosen as the current best model for the next iteration if it significantly improves

240 A. Orriols-Puig et al.

Algorithm 1. Building of structural and classification model via a greedy
search.
Data: dataset is the set of labeled examples.
Result: function is the classification function and bestModel the structural

model.
begin1

i ← 02

count ← 03

[train, test] ← divideData (data)4

bestModel ← [1], [2], ..., [n]5

function ←− createSurrogateFunction (bestModel, train) � See Sect. 2.26

mdl ← evaluateModel (bestModel, test)7

isImproving ← true8

while mdl > θ and isImproving do9

for i ∈ {1, ..., length(bestModel) − 1} do10

for j ∈ {i + 1, ..., length(bestModel) − 1} do11

newModel[count] ← joinLinkages(bestModel, i, j)12

newFunction[count] ← createSurrogateFunction (13

newModel[count], train)
newMdl[count] ← evaluateModel (newModel[count], test)14

count ← count + 115

end16

end17

best ← position min. mdl(newMdl) � Selects the best model18

if newMdl[best] significantly improves mdl then19

bestModel = newModels[best]20

mdl = newMdl[best]21

else22

isImproving=false23

end24

end25

end26

the current best model; otherwise, we terminate the search, and the current best
surrogate and classification models are returned as the (locally) best models.

Three elements of the implementation need further explanation: (1) procedure
to divide the data into training and test sets (line 2), (2) evaluation of the model
(lines 5 and 12), and (3) procedure for comparing two models and choosing the
best one (line 17). Each of the three elements are discussed in the following
paragraphs.

Partition of the data. The procedure used to partition the data into train-
ing and test sets affects the estimation of classification error. A number of
approaches such as holdout validation, k-fold cross validation, and leave-
one-out cross-validation methods can be used. Here, we use a k-fold cross
validation [29] with k = 10.

Substructural Surrogates for Learning Decomposable Classification Problems 241

Evaluation of the model. The quality of a structural model depends on (1)
the complexity of this model, and (2) the test error of the classification
model created from it. Again a number of measures such as minimum de-
scription length metrics and multiobjective approaches could be used to
measure the relative quality of a given surrogate and classification model.
We use the k-fold cross validation which provides a measure of both the test
error and the model complexity in terms of overfitting the training data.
That is, if the structural model is more complex than necessary, the surro-
gate function will tend to overfit the training instances, and the test error
will increase. Nonetheless, we acknowledge that direct measures for model
complexity could be included in the evaluation.

Comparison of models. Given a current-best model, in gESMC we consider
all pairwise merges of the substructures of the current-best model. We need
to choose the best model among all the models created via the pairwise
merges and compare it to the current-best model. Again, this could be done
in a number of ways. For example, we could accept the new model if its
classification error is lower than that of the current-best model. However,
this might lead to spurious linkages and more complex models might be
accepted, especially if the data set is noisy. To avoid getting unnecessarily
complicated structural models, we can say that a model m1 is significantly
better than a model m2 if:

errorm1 < errorm2 − δ, (7)

where δ is a user-set threshold. Alternatively, we can use different statistical
tests as well. In our implementation, we use a paired t-test to determine if a
new, more complex, structural model is better than the current best model
[29]. That is, we feed the t-test with the errors corresponding to the ten
different folds obtained with the current best model and the new model. We
use a significance level of α = 0.01.

Before proceeding with a description of the test functions, we note two important
properties of gESMC. First, in the current implementation gESMC, the struc-
tural model is a partition of the variables into non-overlapping groups. However,
this limitation can easily be relaxed by using other structural models [35,18].
Second, because of the greedy procedure, we need some guidance from lower-
order, sub-optimal structural models toward an optimal structural model. This
limitation can be alleviated by replacing the greedy search heuristic with another
optimization method such as genetic algorithms [11,7]

4 Test Problems

In this section, we present a general set of decomposable problems to inves-
tigate the capabilities of gESMC in correctly identifying salient substructures
and building an accurate classification model. Following the idea of designing
hierarchical artificial problems proposed in [4,3], we design a class of two-level

242 A. Orriols-Puig et al.

k bits

Block1 Block2 Blockm. . .

O1 O2 Om. . .

Problem
output

Higher Level
Layer

Lower Level
Layer

Fig. 1. Example of the design of a two-level hierarchical problem. In the low level
layer, m blocks of k bits are concatenated. Each block is evaluated resulting in the
correspondent output. All the outputs are groups in an input string that is used to
determine the global output.

hierarchical problems where the lower level consists of functions that operate on
a set of binary-input blocks and the upper level consists of functions that op-
erate on the lower-level function values to produce the output (see a schematic
illustration of these types of problems in Fig. 1). The lower- and upper-level
function used in the study are explained in Section 4.1 and 4.2, respectively.

4.1 Lower Level of the Hierarchy

At the lower level of the hierarchy, we considered the following two binary func-
tions which operate independently on m blocks with k variables in each block.
Moreover the variables within a block interact with each other and determine
the output of the function.

The position problem. The position problem [2] is defined as follows. Given
a binary input of length , the output is the position of the left-most one-
valued bit. For example, f(100)=3, f(010)=2, f(001)=1, and f(000)=0. Note
that every variable is linked to all the variables on its left.

The parity problem. The parity problem [15] is a two-class binary problem
defined as follows. Given a binary input of length , the output is the num-
ber of one-valued bits modulo two. For example, f(110)=0, f(100)=1, and
f(111)=1. To predict the output accurately for the parity problem, all the
variables have to be jointly processed. Additionally, for a k-bit parity prob-
lem, the structural model that represents that all the variables are inde-
pendent yields a classification model of the same accuracy as the one that
contains substructures of size k − 1 or less. That is, till we get a structural
model that groups all k variables together, the accuracy of the classification
model does not increase.

4.2 Higher Level of the Hierarchy

At the higher level of the hierarchy, we use the following problems where
each variable contributes independently to the output. That is, the structural

Substructural Surrogates for Learning Decomposable Classification Problems 243

information is contained in the lower-level of the hierarchy and the upper level
function affects the salience of the substructures. Notice that χ-ary strings are
permitted in the higher level. That is, both problems defined as follows for the
higher level can deal with χ-ary strings.

The decoder problem. The decoder problem [2] is a binary-input multi-class
problem defined as follows. Given an input of length , the output is de-
termined by the decimal value of the input. For example, f(111) = 7,
f(101) = 5, and f(000) = 0. Note that each variable independently con-
tributes to the output. That is, starting with class equal to zero, a ’1’ in ith

position adds 2i to the output, irrespective of other variable values.
The count-ones problems. The count-ones is defined as follows. Given a bi-

nary input of size , the output is the number of one-valued bits. Again, the
output of the count-ones problems can be predicted by treating the input
variables independently.

As mentioned earlier, we concatenated m blocks of k bits of the two lower level
problems with the two higher level problems to create four different hierarchical
test problems. Specifically, we used the position at the lower level with the de-
coder (HPosDec) and the count-ones (HPosCount) in the higher level. Similarly,
low order parity blocks were combined again with the decoder (HParDec) and
the count-ones (HParCount). Additionally, we added some irrelevant bits, which
do not contribute to the output, to see if our method was capable of ignoring
them. Therefore, in our case, ≥ m · k, where is the length of the input string.

With the above description of the test problems, the following section presents
the results of gESMC and compares them with those of C4.5 and SMO.

5 Results

This section analyzes the behavior of gESMC for learning hierarchical problems,
and compares the results to those obtained with two highly competitive learners
in terms of performance and interpretability.

5.1 Experimental Methodology

We use the four hierarchical problems designed in the previous section to analyze
the performance of gESMC. We start with concatenations of three minimum-
order blocks in the lower level hierarchy (that is, k=2) and add 9 irrelevant
bits to the input. Our aim is to analyze the capabilities of gESMC in (i) iden-
tifying salient substructures of interacting variables, and (ii) ignoring irrelevant
variables. Next, we increase the order of the lower-order blocks with a two-fold
objective. For the problem with position blocks, we analyze if the system is able
to identify and efficiently handle larger groups of linked variables. For the prob-
lems with parity blocks, we want to investigate the behavior of gESMC when
there is a lack of guidance toward an accurate substructural model.

244 A. Orriols-Puig et al.

Table 1. Test error and standard deviation obtained with gESMC, SMO and C4.5
on the problems HPosDec, HPosCount, HParDec, HParCount with �=15, m = 3, and
k = 2. Results are averaged over ten runs with different holdouts and random seeds.

gESMC C4.5 SMO

HPosDec 0.00% ± 0.00% 0.00% ± 0.00% 0.00% ± 0.00%
HPosCount 0.00% ± 0.00% 0.00% ± 0.00% 21.89% ± 0.13%
HParDec 0.00% ± 0.00% 3.32% ± 2.90% 89.11% ± 0.94%
HParCount 0.00% ± 0.00% 5.15% ± 4.43% 62.72% ± 0.27%

To illustrate the need for detecting linkage groups in classification tasks, we
compare the results obtained with gESMC to those of two widely used learners:
C4.5 [22], and SMO [21]. C4.5 is a decision tree, derived from ID3, which has been
widely used because of its ability to tackle a wider range of problems and be-
cause of the interpretability of the extracted knowledge. SMO is a support vector
machine [30] that implements the Sequential Minimal Optimization algorithm.
Although the interpretability is more difficult since it represents the knowledge
as function weights, its competence has been demonstrated in different kinds of
problems. Both methods were run using WEKA [34]. Unless otherwise noted,
for C4.5 we used the default configuration, and for SMO, we used a polynomial
kernel of order 1.

The three methods are compared in terms of performance (that is, test accu-
racy) and comprehensibility of the knowledge generated by the learner. As the
datasets had a large number of instances, we used the holdout methodology1 to
estimate the test accuracy; that is, 70% of the instances were randomly selected
and placed in the training set, and the rest formed the test set. We repeated the
experiments with ten different holdouts. To compare the performance of each
pair of learners on a given problem, we applied a paired Student t-test [29] on
the results. We fed the results for each different seed to the t-test. To study the
interpretability of each method, we qualitatively compared the structural and
the classification models evolved by gESMC to the decision trees generated by
C4.5, and the weights extracted by SMO.

5.2 Results with 2-Bit Low Order Blocks

We first show performances for gESMC, C4.5, and SMO on the problems HPos-
Dec, HPosCount, HParDec, and HParCount with = 15, m = 3, and k = 2.
Therefore, the problems were formed by three lower level blocks of two bits and
9 irrelevant bits at the end of the binary input. Next, we compare the results in
terms of performance and interpretability.

Comparison of the Performance. Table 1 summarizes the test errors result-
ing of applying gESMC, C4.5, and SMO on the four hierarchical problems. All

1 A holdout is the simplest cross-validation approach where the data is divided in two
sets, the train and the test set.

Substructural Surrogates for Learning Decomposable Classification Problems 245

Table 2. Structural models and surrogate functions build by gESMC for the problems
HPosDec, HPosCount, HParDec, HParCount with �=15, m = 3, and k = 2

HPosDec
link. groups [x0x1][x2x3][x4][x5][x6][x7][x8][x9][x10][x11][x12][x13][x14]
surr. func. 16.75 + 9(1 − x0x1) − 6x2x3 − 3x2x3 − 1.5x4 + 0.5x5

HPosCount
link. groups [x0x1][x2x3][x4][x5][x6][x7][x8][x9][x10][x11][x12][x13][x14]
surr. func. 0.75 + x0x1 + (1 − x2x3) + 0.5x4 + 0.5x5

HParDec
link. groups [x0x1][x2x3][x4x5][x6][x7][x8][x9][x10][x11][x12][x13][x14]
surr. func. 2 + 4(x0x1 + x0x1) − 2(x2x3 + x2x3) − (x4x5 + x4x5)

HParCount
link. groups [x0x1][x2x3][x4x5][x6][x7][x8][x9][x10][x11][x12][x13][x14]
surr. function x0x1 + x0x1 + x2x3 + x2x3 + x4x5 + x4x5

the results were averaged over ten runs, each with a different holdout partition
and random seed.

The results show that gESMC obtained 0% test error for all the problems
tested. This indicates that the method is able to process the variable linkages
and build maximally accurate classification models. None of the other learn-
ers could achieve 0% error in all the problems. C4.5 achieved 0% test error
for the problems HPosCount and HPosDec, the ones formed by position blocks.
Nonetheless, on the problems that consist of parity blocks, C4.5 was significantly
outperformed by gESMC according to a paired t-test on a confidence level of
0.99. Finally, SMO presents the worst behavior of the comparison. The learner
could accurately generalize over the input data only on the HPosDec problem.
For the problems HPosCount, HParDec, and HParCount, the results of SMO
significantly degraded those obtained with gESMC and C4.5. Note the big dif-
ference in the test errors; for HParDec, SMO has 89.11% test error, C4.5 has
3.32%, and gESMC is maximally accurate. We repeated the experiments with
a Gaussian kernel [13] to promote the discovery of the linkage groups, but no
significant improvement was found.

These results highlight the importance of learning and incorporating the struc-
tural model into the classification model. gESMC found highly accurate classi-
fication models only after discovering the problem structure (examples of some
structural and classification models are shown in the next section). However C4.5
and SMO failed since they were not able to identify this structure. Note that the
problems formed by parity blocks resulted more problematic for both learners
than the problems based on position blocks. This could be explained as follows.
The variables linkages in the position are weaker than in the parity. That is,
in the position problem every variable processed from left to right reduces the
uncertainty of the output. In the parity, looking at a single variable does not
reduce the uncertainty, and so, processing the linkages is crucial. We hypothesize
that, for this reason, problems formed by parity are more difficult to learn for
C4.5 and SMO.

Comparison of the Interpretability. We now analyze the interpretability
of the models created by gESMC, and qualitatively compare them to those ob-
tained by C4.5 and SMO. Table 2 shows the structural models and the associated

246 A. Orriols-Puig et al.

surrogate functions built for each problem. For HPosDec and HPosCount,
gESMC correctly detects the linkages between the groups of variables [x0, x1]
and [x2, x3]; all the other variables are considered independent. Variables x4 and
x5 are incorrectly identified as independent because gESMC reaches the termi-
nation criteria of 0% test error. For the problems HParDec and HParCount,
gESMC discovers the linkage groups [x0, x1], [x2, x3], and [x4, x5]. Differently
from the position problem, now gESMC needs to discover all the existing parity
groups to remove the uncertainty, and so, build the most accurate classification
model.

The availability of the structural model with gESMC is another advantage
over other conventional classification techniques in terms of interpretability. The
structural model facilitates easy visualization of the salient variable interactions;
moreover, it permits a better understanding of the resulting surrogate function.
Note that for all the problems, gESMC built easily interpretable functions and
also efficiently ignored irrelevant variables. For example, consider the problem
HParCount, in which the output is the number of ’1s’ resulting from the evalu-
ation of each low-order parity block. The function evolved clearly indicates that
if any of the linkage groups has the schemata ’01’ or ’10’ (values from which the
parity would result in ’1’), the output is incremented by one.

Let us now compare this knowledge representation to those obtained with
C4.5 and SMO. For this purpose, we consider the size of the trees built by
C4.5, and the machines constructed by SMO. For HPosDec and HPosCount,

at1 = 0

| at2 = 0

| | at3 = 0

| | | at4 = 0

| | | | at5 = 0

| | | | | at6 = 0: 0 (153.0)

| | | | | at6 = 1: 1 (150.0)

| | | | at5 = 1: 2 (314.0)

| | | at4 = 1

| | | | at5 = 0

| | | | | at6 = 0: 3 (154.0)

| | | | | at6 = 1: 4 (139.0)

| | | | at5 = 1: 5 (311.0)

| | at3 = 1

| | | at5 = 0

| | | | at6 = 0: 6 (277.0)

| | | | at6 = 1: 7 (299.0)

| | | at5 = 1: 8 (632.0)

. . .

Fig. 2. Portion of the tree built by C4.5 for the HPosDec problem

Substructural Surrogates for Learning Decomposable Classification Problems 247

C4.5 built a tree with 53 nodes, from which 27 were leaves. The resulting trees
specified the output for each combination of the six relevant bits (see a portion
of a tree for HPosDec in Fig. 2). Although these trees detail the output given the
value of the first six variables, they do not show the variable interactions. For
HParCount, C4.5 built trees that, on average, had 136 leaves and 270 nodes. For
HParDec, the trees had 142 leaves and 283 nodes. This high number of nodes
makes the interpretability of tree very hard. Additionally, all the trees had some
irrelevant attributes in the decision nodes. That is, C4.5 was overfitting the
training instances to reduce the training error, resulting in more complicated
trees, further hindering the interpretability of the classification model.

In contrast to gESMC and C4.5, SMO presented the less interpretable results.
In general, SMO creates a machine for each pair of classes, and adjust + 1
weights for each machine (where is the number of attributes of the problem).
For HPosDec, SMO built 351 machines with 16 weights ranging from 0 to 1. For
HPoscount, HParDec, and HParCount, 6, 6, and 28 machines were respectively
created, all them with 16 weights ranging from 0 to 1. Although some of these
weights were zero, the machines evolved could not be interpreted at all. Thus,
the human expert would not be able to extract any information from these
knowledge models.

Although both SMO and gESMC represent the knowledge in weights of func-
tions that partition the search space, gESMC yields the structural model which
permits easy visualization of salient variable interactions. Additionally, while
SMO weights the input variables, gESMC weights the different subsolutions of
the identified substructures. Classification models obtained via gESMC show the
relative influence of subsolutions to the output and therefore gESMC’s models
are more easily interpretable than the ones created by SMO.

5.3 Results Increasing the Low Level Block Size

We now increase the interaction order of the lower-level blocks to analyze its
effect on the performance of gESMC. Additionally, for the test problems with
parity blocks, we also want to investigate the effect of having no guidance from
lower-order substructures. Specifically, we want to analyze if this lack of guidance
thwarts the search of gESMC toward the best structural form of the surrogate.
For this purpose, we use HPosDec, HPosCount, HParDec, and HParCount with
 = 15, m = 2, and k = 3, and compared gESMC to C4.5 and SMO.

Table 3 shows the test errors for gESMC, C4.5, and SMO. For HPosDec and
HPosCount, gESMC obtained 0% error test and for both problems, two different
structural models were created during independent runs:

Model1 : [x0x1][x3x4x5][x2][x6][x7][x8][x9][x10][x11][x12][x13][x14],
Model2 : [x0x1x2][x3x4][x5][x6][x7][x8][x9][x10][x11][x12][x13][x14].

In both the above models, the variables of one of the lower-level blocks are
correctly identified, and only two variables of the other lower-level blocks form a
linkage group. As observed in the previous section, this is because gESMC meets

248 A. Orriols-Puig et al.

Table 3. Test error and standard deviation obtained with gESMC, SMO and C4.5
on the problems HPosDec, HPosCount, HParDec, HParCount with �=15, m = 3, and
k = 3. Results are averages over ten runs with different holdouts and random seeds.

gESMC C4.5 SMO

HPosDec 0.00% ± 0.00% 0.00% ± 0.00% 0.00% ± 0.00%
HPosCount 0.00% ± 0.00% 0.00% ± 0.00% 14.24% ± 1.03%
HParDec 24.00% ± 25.50% 9.01% ± 5.86% 76.91% ± 2.01%
HParCount 49.99% ± 0.00% 12.25% ± 6.69% 49.94% ± 0.22%

the convergence criteria of 0% test errors even when one of the substructures is
partially identified.

The surrogate functions evolved are qualitatively similar to those obtained in
the previous section. In all cases, only the six relevant variables were taken in
consideration, and specifically, some of their schemata. For example, one of the
surrogate functions created for the HPosDec is

14.9x5 + 15x5 − 2.5x3x4 + x3x4 − 12x0x1x2 − 4x0x1x2 − 8x0x1x2 − 4x0x1x2,
(8)

which only contains the six relevant variables x0, x1, · · · , x5.
As expected, for HParDec and HParCount, gESMC yielded poorer results. For

HParDec, the average test error was 24% with a high standard deviation. This
high deviation is because gESMC yielded a maximally accurate classification
model for 50% of the runs. For the rest 50%, gESMC could not discover an
accurate structural model. Further investigation showed that this is due to the
stochasticity of the holdout estimation. Since we randomly selected 70% of the
instances as the training set, the symmetry of the parity problem may be broken
leading the greedy search heuristic to yield the accurate structural model. This
indicates that introduction of stochasticity might break symmetry of parity-
like functions and render the accurate structural model hill-climbable. However,
the efficacy of adding exogenous noise to break symmetry needs to be further
investigated.

For HPosDec, gESMC was not able to discover the accurate structural model
in any of the cases, and therefore yielded a test error of 50%. As mentioned ear-
lier, the reason for this failure is due of the greedy search of the structural model.
For the k-bit parity function, since all structural models with substructures of
order k − 1 or lower yield classification models with the same error, the optimal
structural model is not hill-climbable. Therefore, the greedy search heuristic fails
to identify the accurate structural model and so yields inaccurate classification
models. This limitation can easily be alleviated in several number of ways, some
of which are outlined in the next section.

Finally, we compare the results of gESMC to those obtained with C4.5 and
SMO. All three algorithms perform equivalently in tackling HPosDec; differently,
gESMC and C4.5 outperform SMO on HPosCount. However, on HParDec and
HParCount, C4.5 outperforms both gESMC and SMO. Nonetheless, as with the

Substructural Surrogates for Learning Decomposable Classification Problems 249

2-bit lower-order blocks, the trees of C4.5 had some irrelevant variables in the
decision nodes indicating overfitting to the training data.

These results clearly show that gESMC can discover the accurate structural
model provided that it is hill-climbable from lower-order structural models. In
the following section, we discuss some approaches to relax this limitation of
gESMC. We also discuss ways to represent structural models with overlapping
substructures.

6 Discussion

The results presented in the previous section highlighted both the strengths and
limitations of gESMC. In this section we discuss some approaches to overcome
the limitations of gESMC which have to be further investigated. We discuss
approaches to discover accurate structural models even when there is a lack of
guidance from lower-level structural models. Moreover, we also address two new
issues: how to deal with problems that present non-linearities in the high order
function and also discuss ways to represent structural models with overlapping
substructures.

6.1 Lack of Guidance from Lower-Order Substructures

As mentioned earlier, the greedy search used in gESMC needs some guidance
from lower-order substructural models towards the optimal structural model.
That is, in order to discover a k-variable substructure the greedy search needs
a classification model built with at least one of the substructures of order 2 to
be more accurate than that with substructures of order 1, and the classification
model built with at least one of the substructures of order 3 has to be more
accurate than those with substructures of order 2 and so on. In the absence of
such a guidance, the greedy search may stop because it cannot find any structural
model that decreases the classification error. To alleviate this limitation, we
propose the following two approaches:

Increase the order of substructural merges. We can increase the order of
the linkages that the greedy search does if the test error is high and no better
structural model is found. That is, at each iteration, instead of pairwise
merges, we could permit higher-order merges if the pairwise merges yield no
improvement.

We implemented this approach and tested gESMC on the four hierarchical
problems. The results show that gESMC obtained 0% test error in all the
four problems, and the structural models were correctly evolved. However,
the limitation of this approach is the increase in the complexity and cost of
the algorithm which is dictated by the maximum order of linkages permitted
(max):

Cost =
(

2

)
· s +

(

3

)
· s + · · · +

(

max

)
· s, (9)

250 A. Orriols-Puig et al.

where s is the cost of building a surrogate. Note that the cost of this approach
increases with max. For this reason, we do not consider this approach as a
general solution, although it can be really useful in certain problem domains.

Select randomly one of the new structural models. If the test error is
high, and the greedy search cannot find any structural model that signif-
icantly decreases this test error, a new structural model can be chosen ran-
domly. More sophisticated approaches could be followed, such as using a
technique based on simulated annealing [14]. In this case, we would accept a
structural model with a higher error with the hope of getting a better model
in the subsequent iterations.

Preliminary results using this strategy indicates that gESMC yields max-
imally accurate classification models for problems consisting of lower-order
parity blocks with k > 2. However, the structural models evolved are slightly
more complicated and contain spurious interactions between variables. Nev-
ertheless, these spurious linkages can be removed by analyzing the classifica-
tion model and the relative contribution of different schemata to the output.

6.2 Non-linearities in the High Order Functions

The problems designed for the experimentation consisted in higher order func-
tions in which each variable contributed independently to the output. The search
procedure could be easily replaced to be able to tackle problems with non-
linearities in the higher order functions [4] more efficiently. For example, the
greedy search of gESMC could be easily replaced by population-based search
methods such as genetic algorithms [11,7]. This would permit to solve non-
linearities in the higher order of the hierarchy at the cost of slightly increas-
ing the computational time, since a population of candidate solutions should be
evaluated and evolved.

6.3 Creating Structural Models with Overlapping Substructures

Finally, we look at problems with overlapping linkages where some variables
interact with different groups of variables depending on the input. A widely
used test problem with overlapping linkages is the multiplexer problem [12,31],
which is defined as follows. Given a bit string of length , where the first log2
bits are the address bits and the remaining bits are the position bits , the output
is the value of the position bit referred by the decimal value of the address bits.
For example, for the 6-bit multiplexer, f(00 0101)=0 and f(10 1011)=1. Thus,
a surrogate with a group formed by all the address bits and the corresponding
position bit as a basis accurately determines the output.

We tested gESMC on the 6-bit and 11-bit multiplexer problems. The struc-
tural models evolved contained all the address and the position bits in the same
linkage group. For example, we obtained the following structural model for the
6-bit multiplexer:

[x0x1x2x3x4x5],

Substructural Surrogates for Learning Decomposable Classification Problems 251

which resulted in a 0% test error. Since gESMC builds structural models with
non-overlapping substructures, one way to handle overlapping substructures is
by grouping the substructures together. However, such a merger is unnecessary
and other methods which can build structural model with overlapping surrogates
such as the design structure matrix genetic algorithm (DSMGA) [35,17], can
evolve a structural model such as:

[x0x1x2][x0x1x3][x0x1x4][x0x1x5],

The above structural model also yields a surrogate with 0% test error, and gives
more information than the former one. Therefore, we will investigate the use of
DSMGA and other similar methods that can discover structural models with
overlapping variables.

7 Summary and Conclusions

In this paper, we proposed a methodology for learning by building a classification
model that uses the structural and surrogate model of a data set. First, we
discover the structural model of a set of examples, identifying salient groups of
interacting variables to determine the output. Then, the structural model is used
to infer the functional form of a surrogate function and the coefficients of the
surrogate are estimated using linear regression. Finally, using the substructural
surrogate, we build a classification model to predict the class of a given new set
of inputs.

We presented gESMC, an implementation of the methodology which uses a
greedy search heuristic to search for the structural, surrogate, and classification
models that minimize the classification error. Without any problem knowledge,
gESMC starts with a simplest model of independent variables and proceeds to
explore more complex structural models untill the classification error no longer
improves or is below a user-defined threshold.

We ran gESMC on four hierarchical test problems. We compared the models
evolved by gESMC with those created by C4.5 and SMO. The empirical ob-
servations evidenced that gESMC significantly outperforms C4.5 and SMO in
problems that consisted of 2-bit low order blocks in terms of learning accuracy
and interpretability. Moreover, one of the main differences between gESMC and
other learners is highlighted: gESMC detects the structure of the data and uses it
to predict the class of given inputs. In essence, gESMC not only yields accurate
classification models, but also the classification models evolved are interpretable.
That is, gESMC not only provides the classification model, but also the structure
of the data, making it amenable to human interpretation.

Along with these strengths, the results also highlighted some limitations of
the particular implementation of the methodology, gESMC. Specifically, the ac-
curacy of the structural model to capture salient variable interactions depends
on the guidance from lower-order substructures. Therefore, the accuracy of the
structural model and consequently the accuracy of the classification model suf-
fers when there is no guidance from lower-order substructures. This limitation

252 A. Orriols-Puig et al.

is expected provided that we use a minimum description length style metric and
also a greedy search heuristic that only considers pairwise merges of the substruc-
tures. Several approaches were outlined to overcome this limitation, serving as a
basis for further research on substructural surrogates for learning decomposable
classification problems.

Acknowledgments

We thank the support of Enginyeria i Arquitectura La Salle, Ramon Llull Univer-
sity, Ministerio de Ciencia y Tecnoloǵıa under project TIN2005-08386-C05-04,
and Generalitat de Catalunya under Grants 2005FI-00252 and 2005SGR-00302.

This work was also sponsored by the Air Force Office of Scientific Research,
Air Force Materiel Command, USAF, under grant F49620-03-1-0129, the Na-
tional Science Foundation under grant ITR grant DMR-03-25939 at the Ma-
terials Computation Center. The U.S. Government is authorized to reproduce
and distribute reprints for government purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Air Force Office of
Scientific Research, the National Science Foundation, or the U.S. Government.

References

1. Baluja, S.: Incorporating a priori Knowledge in Probabilistic-Model Based Opti-
mization. In: Pelikan, M., Sastry, K., Cantú-Paz, E. (eds.) Scalable Optimization
via Probabilistic Modeling: From Algorithms to Applications ch. 9, pp. 205–219.
Springer, Berlin (2006)

2. Bernadó-Mansilla, E., Garrell, J.M.: Accuracy-Based Learning Classifier Systems:
Models, Analysis and Applications to Classification Tasks. Evolutionary Compu-
tation 11(3), 209–238 (2003)

3. Butz, M.V.: Rule-Based Evolutionary Online Learning Systems: A Principled Ap-
proach to LCS Analysis and Design. In: Studies in Fuzziness and Soft Computing,
vol. 109. Springer, Heidelberg (2006)

4. Butz, M.V., Pelikan, M., Llorà, X., Goldberg, D.E.: Automated Global Structure
Extraction for Effective Local Building Block Processing in XCS. Evolutionary
Computation 14(3), 345–380 (2006)

5. Drapper, N.R., Smith, H.: Applied Regression Analysis. John Wiley & Sons, New
York (1966)

6. Gibson, J.J.: The Ecological Approach to Visual Perception. Lawrence Erlbaum
Associates, Mahwah (1979)

7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization & Machine Learning,
1st edn. Addison Wesley, Reading (1989)

8. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic
Algorithms, 1st edn. Kluwer Academic Publishers, Dordrecht (2002)

9. Harik, G.: Linkage Learning via Probabilistic Modeling in the ECGA. Technical
report. University of Illinois at Urbana-Champaign, Urbana, IL (January 1999)
(IlliGAL Report No. 99010)

Substructural Surrogates for Learning Decomposable Classification Problems 253

10. Harik, G.R., Lobo, F.G., Sastry, K.: Linkage Learning via Probabilistic Modeling in
the ECGA. In: Pelikan, M., Sastry, K., Cantú-Paz, E. (eds.) Scalable Optimization
via Probabilistic Modeling: From Algorithms to Applications ch. 3, pp. 39–61.
Springer, Berlin (2006) (Also IlliGAL Report No. 99010)

11. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of
Michigan Press (1975)

12. De Jong, K.A., Spears, W.M.: Learning Concept Classification Rules Using Genetic
Algorithms. In: Proceedings of the International Joint Conference on Artificial
Intelligence, Sidney, Australia, pp. 651–656 (1991)

13. Keerthi, S.S., Lin, C.J.: Asymptotic Behaviors of Support Vector Machines with
Gaussian Kernel. Neural Computation 15(7), 1667–1689 (2003)

14. Korst, J., Aarts, E.: Simulated Annealing and Boltzmann Machines. Wiley-
Interscience, New York (1997)

15. Kovacs, T.: Deletion Schemes for Classifier Systems. In: GECCO 1999: Proceedings
of the Genetic and Evolutionary Computation Conference, pp. 329–336. Morgan
Kaufmann, San Francisco (1999)

16. Llorà, X., Sastry, K., Goldberg, D.E., de la Ossa, L.: The χ-ary extended com-
pact classifier system: Linkage learning in Pittsburgh LCS. In: Proceedings of
the 2006 Genetic and Evolutionary Computation Conference Workshop Program.
ACM Press, Berlin (2006) (Also IlliGAL Report No. 2006015)

17. Llorà, X., Sastry, K., Yu, T.-L., Goldberg, D.E.: Do not match, inherit: Fitness
surrogates for genetics-based machine learning. In: Proceedings of the 2007 Genetic
and Evolutionary Computation Conference, vol. 2, pp. 1798–1805 (2007)

18. Pelikan, M.: Hierarchical Bayesian Optimization Algorithm: Toward a new Gener-
ation of Evolutionary Algorithms. Springer, Berlin (2005)

19. Pelikan, M., Sastry, K.: Fitness inheritance in the Bayesian optimization algorithm.
In: Proceedings of the 2004 Genetic and Evolutionary Computation Conference,
vol. 2, pp. 48–59 (2004) (Also IlliGAL Report No. 2004009)

20. Pelikan, M., Sastry, K., Cantú-Paz, E. (eds.): Scalable Optimization via Prob-
abilistic Modeling: From Algorithms to Applications. Studies in Computational
Intelligence, vol. 33. Springer, Heidelberg (2006)

21. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal
Optimization. In: Advances in Kernel Methods - Support Vector Learning, pp.
557–563. MIT Press, Cambridge (1998)

22. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers, San Mateo (1995)

23. Rao, C.R., Toutenburg, H.: Linear Models: Least Squares and Alternatives.
Springer, Berlin (1999)

24. Recktenwald, G.: Numerical Methods with MATLAB: Implementations and Ap-
plications. Prentice Hall, Englewood Cliffs (2000)

25. Sastry, K., Goldberg, D.E.: Probabilistic Model Building and Competent Genetic
Programming. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and
Practise, ch. 13, pp. 205–220. Kluwer, Dordrecht (2003)

26. Sastry, K., Lima, C.F., Goldberg, D.E.: Evaluation Relaxation Using Substructural
Information and Linear Estimation. In: GECCO 2006: Proceedings of the 8th an-
nual Conference on Genetic and Evolutionary Computation, pp. 419–426. ACM
Press, New York (2006)

27. Sastry, K., Pelikan, M., Goldberg, D.E.: Efficiency enhancement of genetic algo-
rithms via building-block-wise fitness estimation. In: Proceedings of the IEEE In-
ternational Conference on Evolutionary Computation, pp. 720–727 (2004) (Also
IlliGAL Report No. 2004010)

254 A. Orriols-Puig et al.

28. Simon, H.A.: Sciences of the Artificial. MIT Press, Cambridge (1969)
29. Dietterich, T.G.: Approximate Statistical Tests for Comparing Supervised Classi-

fication Learning Algorithms. Neural Comp. 10(7), 1895–1924 (1998)
30. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
31. Wilson, S.W.: Quasi-Darwinian Learning in a Classifier System. In: 4th IWML,

pp. 59–65. Morgan Kaufmann, San Francisco (1987)
32. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computa-

tion 3(2), 149–175 (1995)
33. Wilson, S.W.: Generalization in the XCS Classifier System. In: 3rd Annual Conf.

on Genetic Programming, pp. 665–674. Morgan Kaufmann, San Francisco (1998)
34. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)
35. Yu, T.-L.: A matrix approach for finding extrema: Problems with modularity, hi-

erarchy, and overlap. PhD thesis, University of Illinois at Urbana-Champaign, Ur-
bana, IL (2006)

Empirical Evaluation of Ensemble Techniques
for a Pittsburgh Learning Classifier System

Jaume Bacardit1,2 and Natalio Krasnogor1

1 Automated Scheduling, Optimization and Planning research group, School of
Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road,

Nottingham, NG8 1BB, UK
{jqb,nxk}@cs.nott.ac.uk

2 Multidisciplinary Centre for Integrative Biology, School of Biosciences, University of
Nottingham, Sutton Bonington, LE12 5RD, UK

Abstract. Ensemble techniques have proved to be very successful in
boosting the performance of several types of machine learning methods.
In this paper, we illustrate its usefulness in combination with GAssist,
a Pittsburgh-style Learning Classifier System. Two types of ensembles
are tested. First we evaluate an ensemble for consensus prediction. In
this case several rule sets learnt using GAssist with different initial ran-
dom seeds are combined using a flat voting scheme in a fashion similar
to bagging. The second type of ensemble is intended to deal more effi-
ciently with ordinal classification problems. That is, problems where the
classes have some intrinsic order between them and, in case of misclassi-
fication, it is preferred to predict a class that is close to the correct one
within the class intrinsic order. The ensemble for consensus prediction
is evaluated using 25 datasets from the UCI repository. The hierarchical
ensemble is evaluated using a Bioinformatics dataset. Both methods sig-
nificantly improve the performance and behaviour of GAssist in all the
tested domains.

1 Introduction

Ensemble learning, a family of techniques established for more than a decade
in the Machine Learning community, provides performance boost and robust-
ness to the learning process by integrating the collective predictions of a set of
models in some principled fashion [1]. This family of techniques covers many dif-
ferent approaches, the two most representative methods being Bagging [2] and
Boosting [3].

This paper presents the empirical evaluation of two types of ensemble tech-
niques that integrate the collective predictions of models generated using Learn-
ing Classifier Systems (LCS) methods. Specifically, we will use the GAssist [4]
LCS, a system belonging to the Pittsburgh approach of LCSs, that has shown to
generate very compact and accurate solutions for a variety of datasets [5,4,6,7,8].

The first of these two approaches will consist in a simple consensus voting
of an ensemble of rule sets generated by running GAssist several times on the

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 255–268, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

256 J. Bacardit and N. Krasnogor

same dataset with different initial random seeds. This is conceptually similar to
Bagging, but its implementation is even simpler.

The second type of ensemble is designed to solve problems of ordinal classi-
fication [9]. That is, when the classes of the problem have some intrinsic order.
We do this with two goals in mind: (1) improving the performance of GAssist for
these datasets and (2) when a misclassification occurs, to try to keep the errors
localized by attempting to minimize the distance between the actual and pre-
dicted classes according to the intrinsic class order. Our ensemble approach takes
a N classes dataset and generates N-1 hierarchically structured binary datasets
from it. As an example, from a 10 classes dataset, first we would learn how to
separate between the examples with a class ≤ 5 and examples with class > 5.
Then, using the examples of class ≤ 5 we would learn how to separate between
≤ 2 and > 2. The same would happen with examples with class > 5. At the
end of this process we would have a hierarchy of 9 binary classifiers. GAssist
aim is to learn these N-1 binary datasets. Afterwards, the ensemble will inte-
grate the predictions of the N-1 binary models into a final prediction of the N
classes domain. This kind of ensemble has been shown to be useful for a series of
Bioinformatics datasets [6,7,10,11,8,12] which give raise to ordinal classification
problems.

The rest of the paper is structured as follows: First, section 2 describes some
related work and compares it to the ensemble mechanisms studied in this pa-
per. Next, section 3 contains the main characteristics of GAssist, the Pittsburgh
LCS used in this paper. Section 4 describes and evaluates the first type of en-
semble studied in this paper, the consensus voting ensemble, and section 5 the
second type, the hierarchical ensemble for ordinal classification. Finally, section
6 discusses our findings and suggests possible directions for future research. Will
describe the conclusions and further work of the paper.

2 Related Work

Usually, there are two questions that have to be addressed when building and
using an ensemble that integrates the predictions of several models:

– What data is used to train each model?
– How are the individual model predictions integrated to produce a final en-

semble prediction?

In the case of Bagging [2], N views of the training set are generated by a
sampling with replacement procedure, and each of the N models in the ensemble
is trained with one of these views. After that, the ensemble prediction process
follows a simple majority voting: the ensemble will predict the most frequent class
from the ones predicted by the N members of the ensemble. The first of the two
types of ensembles studied in this paper shares the same decision mechanism
as Bagging, a consensus voting of the generated models. The difference with
Bagging lays in the way that the models are generated. In our ensemble we have
a single dataset, and the different models are generated by learning this dataset

Empirical Evaluation of Ensemble Techniques 257

feeding the GAssist LCS with different random seeds, which results in a simpler
implementation.

The aim of bagging is to generate models that complement each other. This is
achieved implicitly by the sampling process used to generate the models. On the
other hand, Boosting [3] achieves the same aim in an explicit way. This method
generates the models and the dataset in an iterative way. The first model uses
the original training data, and the later models focus on learning the examples
that were mis-classified by the previous models. This is achieved by weighting the
instances based on their mis-classification rate on previous models. Finally, the
ensemble prediction is a weighted voting process, where the weight of a model
is based on its error over the training data used to generate it.

There are few examples of the use of ensembles in the LCS community. Llorà
et al. [13] studied several policies to select the representative candidates from
the final population of a Pittsburgh LCS, but did not integrate individuals from
several populations. Also, Bull et al. [14] investigated the use of an ensemble
of complete LCS populations using an island model. Their ensemble took place
during the learning process, not afterwards unlike the approach of this paper.

There are several methods reported in the literature to perform ordinal clas-
sification by means of an ensemble. For instance, the method proposed by Frank
and Hall [9] takes advantage of learning techniques that can produce a probabil-
ity of an instance belonging to a certain class and divides the learning process
of an N class ordinal domain into N-1 binary domains in the following way:

1. This method needs models that can produce class probability estimates
2. For a given domain D with ordered classes ranging from 1 to k
3. k − 1 binary domains Di .. Dk−1 are generated, where the class definition

for domain i will be defined by the predicate D > i. That is, the subdomain
D1 will predict if the class of the examples is greater than 1, D2 will predict
if the class of the examples is greater than 2, ...

4. Models for these k − 1 domains are generated
5. For each new unseen instances, the probability that this instance belongs to

each of the k classes is computed as follows:
– P (D = 1) = 1 − P (D > 1)
– P (D = i) = P (D > i − 1) − P (D > i), 1 < i < k
– P (D = k) = P (D > k − 1)

6. The ensemble predicts the class with higher probability

This method generates k−1 datasets as in our hierarchical ensemble method.
However all the binary datasets of this method have the same number of in-
stances as the original dataset, while in our method some of the datasets only
need to learn a subpart of the domain (a certain sub-range of the k ordinal
classes) and thus only need to contain the instances of the relevant classes.

An alternative way of doing ordinal classification was proposed by Kramer
et al. [15]. Instead of dividing the problem in several sub-problems and combining
the models learned from them, they treat the dataset as a regression problem,
using the S-CART [16] regression trees induction method, and then map the
continuous predictions provided by S-CART into some of the discrete ordinal

258 J. Bacardit and N. Krasnogor

classes. Two types of policies are studied. The first of them is a simple rounding
of the outputs of the unmodified S-CART into the nearest class. The second
policy is to modify internally S-CART so that it produces integer predictions
corresponding to the discrete ordinal classes.

3 The GAssist Learning Classifier System

GAssist [4] is a Pittsburgh Genetic–Based Machine Learning system descendant
of GABIL [17]. The system applies a near-standard generational GA that evolves
individuals that represent complete problem solutions. An individual consists of
an ordered, variable–length rule set.

Using the rules of an individual as an ordered set to perform the match process
allows the creation of very compact rule sets by the use of default rules. We
use an existing mechanism [18] to explicitly exploit this issue and determine
automatically the class for the default rule.

We have used the GABIL [17] rule-based knowledge representation for nominal
attributes and the adaptive discretization intervals (ADI) rule representation [4]
for real-valued ones. To initialize each rule, the system chooses a training example
and creates a rule that guarantees to cover this example [19].

A fitness function based on the Minimum Description Length (MDL) princi-
ple [20] is used. The MDL principle is a metric applied to a theory (a rule set

Table 1. GAssist configuration for the tests reported in the paper

Parameter Value
General parameters

Crossover probability 0.6
Selection algorithm Tournament
Tournament size 3
Population size 400
Individual-wise mutation probability 0.6
Initial #rules per individual 20

Rule Deletion operator
Iteration of activation 5
Minimum number of rules #active rules + 3

MDL-based fitness function
Iteration of activation 25
Initial theory length ration 0.075
Weight relax factor 0.9

ADI rule representation
Split and merge probability 0.05
Initial reinitialize probability 0.02
Final reinitialize probability 0
#bins of uniform-width discretizers 4,5,6,7,8,10,15,20,25
Maximum number of intervals 5

Empirical Evaluation of Ensemble Techniques 259

here) which balances its complexity and accuracy. Our specific MDL formula-
tion promotes rule sets with as few rules as possible as well as rules containing
predicates as simple as possible. The details and rationale of this fitness formula
are explained in [4].

The system also uses a windowing scheme called ILAS (incremental learning
with alternating strata) [21] to reduce the run-time of the system. This mecha-
nism divides the training set into several non-overlapping strata and chooses a
different stratum at each GA iteration for the fitness computations of the indi-
viduals. ILAS empirically showed in previous experiments not only to reduce the
computational cost of GAssist but also to apply generalization pressure (com-
plementary to the one applied by the MDL-based fitness function) that helped
generating more compact and accurate solutions.

Parameters of the system are described in table 1.

4 Ensembles for Consensus Prediction

The evaluated ensemble technique follows these steps:

1. GAssist is run N times on the unmodified training set, each time using a
different seed to initialize the pseudo-random numbers generator

2. From each of these N runs a rule set is extracted. This rule set corresponds
to the best individual of the population, evaluated using the training set

3. For each instance in the test set, the N members of the ensemble produce a
prediction. The majority class of these predictions is used

This ensemble technique is very similar to Bagging, with just one difference: all
models (rule sets) are learned using the same training data: the original training
set.

Each rule set produced by GAssist is stored in text format as its phenotype
representation: the actual ordered predicates in conjunctive normal form that
constitute a rule set. Moreover, when these rule sets are dumped to text format,
only the relevant attributes are expressed. This means that the ensemble code
will not make unnecessary calculations for the match process of the irrelevant
attributes. To illustrate the text format used to express the rules generated by
GAssist, figure 1 contains an example of a rule set for the Wisconsin Breast
Cancer domain generated by GAssist.

4.1 Empirical Evaluation

In order to evaluate the performance of the ensemble method described in this
paper we have used a test suite of 25 datasets that represent a broad range of
domains in respect to number of attributes, instances, type, etc. These problems
were taken from the University of California at Irvine (UCI) repository [22], and
their features are summarized in table 2.

The datasets are partitioned using the standard stratified ten-fold cross-
validation method. Three different sets of 10-cv folds have been used. Also, the

260 J. Bacardit and N. Krasnogor

1:Att Clump Thickness is [<9.4] and Att Cell Size Uniformity is [<4.6] and Att

Cell Shape Uniformity is [<6.4] and Att Marginal Adhesion is [<7.75] and Att Single Epi Cell Size

is [<5.5][>7.75] and Att Bare Nuclei is [<5.5] and Att Normal Nucleoli is [<4][5.5,8.5] and Att

Mitoses is [<6.76][>7.12] → benign

2:Att Cell Size Uniformity is [<1.9] and Att Single Epi Cell Size is [<7.75] and Att Normal Nucleoli

is [<4][5.5,8.5] → benign

3:Default rule → malignant

Fig. 1. Rule set generated by GAssist for the Wisconsin Breast Cancer dataset

Table 2. Features of the datasets used in this paper. #Inst. = Number of Instances,
#Attr. = Number of attributes, #Real = Number of real-valued attributes, #Nom.
= Number of nominal attributes, #Cla. = Number of classes, Dev.cla. = Deviation of
class distribution.

Dataset Properties
Code #Inst. #Attr. #Real #Nom. #Cla. Dev.cla.
bal 625 4 4 — 3 18.03%
bpa 345 6 6 — 2 7.97%
bre 286 9 — 9 2 20.28%
cmc 1473 9 2 7 3 8.26%
col 368 22 7 15 2 13.04%
cr-a 690 15 6 9 2 5.51%
gls 214 9 9 — 6 12.69%
h-c 303 13 6 7 2 4.46%
hep 155 19 6 13 2 29.35%
h-h 294 13 6 7 2 13.95%
h-s 270 13 13 — 2 5.56%
ion 351 34 34 — 2 14.10%
irs 150 4 4 — 3 —
lab 57 16 8 8 2 14.91%
lym 148 18 3 15 4 23.47%
pim 768 8 8 — 2 15.10%
prt 339 17 — 17 21 5.48%
son 208 60 60 — 2 3.37%
thy 215 5 5 — 3 25.78%
vot 435 16 — 16 2 11.38%
wbcd 699 9 9 — 2 15.52%
wdbc 569 30 30 — 2 12.74%
wine 178 13 13 — 3 5.28%
wpbc 198 33 33 — 2 26.26%
zoo 101 16 — 16 7 11.82%

experiments were repeated 15 times with different random seeds. This means
that the GAssist results for each dataset included 450 runs, either by averaging
the test accuracy of each of these 450 runs or by using the ensemble technique.

Student t-tests with a confidence interval of 95% were used to determine
whether significant differences between the performance of the individual runs
of GAssist and the ensemble of these same runs can be measured. The input
data for the t-test will be the test accuracy obtained in each of the 30 test sets
that we have (3x10-cv). The ensemble code produced one accuracy measure for
each test set. The test accuracy of the individual runs of GAssist (15 repetitions
for each data set) were computed by averaging these accuracies. The parameters
of the system are the ones defined in [19].

Empirical Evaluation of Ensemble Techniques 261

Table 3 contains the results of the experiments performed to evaluate the
ensemble technique studied in this paper. The table contains, for each dataset,
the average accuracy of the 450 individual runs and the average accuracy of the
30 ensembles produced from the individual runs. We can observe how, for all
datasets, the ensemble produces higher accuracy than the individual GAssist
runs. The average accuracy increase is 2.5%. Also, the accuracy difference was
significant in 10 of the 25 datasets, according to the t-tests.

Table 3. Results of the experiments to evaluate the consensus ensemble applied over
GAssist runs. A • symbol in a row means that the ensemble was able to significantly
outperform the GAssist individual runs according to the t-tests.

Dataset GAssist acc. Ensemble acc.
bal 79.0±4.0 82.5±3.8•
bpa 62.4±7.8 65.7±7.7
bre 70.5±7.9 73.0±7.6
cmc 54.4±3.9 55.7±3.6
col 93.3±4.3 96.2±3.2•
cr-a 85.1±4.1 86.0±3.7
gls 66.8±9.5 71.9±8.0•
h-c1 80.4±5.9 83.0±5.2•
h-h 95.7±3.4 96.7±2.7
h-s 80.2±7.6 82.0±6.9
hep 89.8±8.0 93.6±5.5•
ion 92.0±5.2 93.1±5.1
irs 95.3±5.6 95.8±5.6
lab 98.1±5.4 100.0±0.0•
lym 80.8±11.2 84.4±9.9
pim 74.7±4.8 75.6±4.0
prt 47.5±6.7 52.7±6.8•
son 76.6±9.3 84.0±7.5•
thy 92.0±5.7 93.8±5.4
vot 97.1±3.3 97.6±2.7

wbcd 96.1±2.5 96.2±2.3
wdbc 94.3±3.1 95.2±2.7
wine 93.4±5.5 96.3±3.9•
wpbc 75.3±8.3 80.4±7.6•
zoo 92.1±8.0 94.1±6.3
ave 82.5±13.7 85.0±12.9

After showing the benefits of using this kind of ensemble to boost the perfor-
mance of GAssist, we would like to perform some simple tests to illustrate the
impact of the ensemble size in its performance. To this extend, we have reused
the 15 rule sets that were previously integrated into a single ensemble to produce
alternative ensembles of 5 and 10 rule sets. Three ensembles of 5 rule-sets each
were created with non-overlapped rule sets (using rule sets 1-5 for ensemble 1,
rule sets 6-10 for ensemble 2 and rule sets 11-15 for ensemble 3). Three ensem-
bles of 10 rules-sets were created, this time with overlapped rule sets (using rule
sets 1-10 for ensemble 1, 6-10 for ensemble 2 and 1-5,11-15 for ensemble 3). The
performance of the 3 rule sets for each tested ensemble size were averaged.

Table 4 shows the results of these experiments comparing the performance
of the ensembles of 5, 10 and 15 rule sets. This time we applied a different
statistical tests, the Friedman test, because it is suited to compare multiple
methods across different datasets. We have used the test as suggested in [23]. The

262 J. Bacardit and N. Krasnogor

Table 4. Comparing ensembles of different sizes (5, 10 and 15 rule-sets per ensemble)
applied over rule-sets generated by GAssist

Dataset 5 rule sets 10 rule sets 15 rule sets
bal 81.6±2.9 82.3±3.0 82.5±3.8
bpa 64.4±6.7 65.5±6.6 65.7±7.7
bre 71.7±6.5 73.1±7.2 73.0±7.6
cmc 55.1±3.5 55.2±3.5 55.7±3.6
col 95.7±3.0 96.0±2.9 96.2±3.2
cr-a 85.9±3.8 85.7±3.8 86.0±3.7
gls 70.1±7.3 71.3±7.7 71.9±8.0
h-c1 82.5±5.0 83.0±4.7 83.0±5.2
h-h 96.2±2.6 96.3±2.6 96.7±2.7
h-s 81.6±6.7 82.0±6.5 82.0±6.9
hep 92.1±5.5 92.9±5.0 93.6±5.5
ion 93.1±4.6 93.0±4.9 93.1±5.1
irs 95.6±5.0 95.7±5.3 95.8±5.6
lab 99.3±2.1 99.7±1.3 100.0±0.0
lym 83.7±9.6 84.3±10.1 84.4±9.9
pim 75.5±3.5 75.8±3.5 75.6±4.0
prt 51.6±5.5 52.3±6.1 52.7±6.8
son 81.7±6.5 82.9±7.0 84.0±7.5
thy 93.4±5.0 93.3±5.4 93.8±5.4
vot 97.5±2.6 97.7±2.7 97.6±2.7

wbcd 96.3±2.3 96.2±2.3 96.2±2.3
wdbc 95.1±2.5 95.2±2.8 95.2±2.7
wine 95.9±3.4 96.3±3.3 96.3±3.9
wpbc 79.2±7.1 79.7±7.3 80.4±7.6
zoo 94.1±5.8 93.8±6.2 94.1±6.3
ave 84.4±13.1 84.8±12.9 85.0±12.9

test indicate that indeed there are significant performance differences between
the three sizes of ensemble (with a probability of error of 1.1e−6). The Holm
post-hoc test was used to compare a control method (the best method, the 15-
rule-sets ensemble) against the other methods. With a confidence level of 95%,
the Holm test indicated that the differences between the best ensemble and the
other two ensembles are significant. Nevertheless, the average accuracy difference
between the 5-rule-sets ensemble and the 15-rule-sets ensemble is only 0.6, and
1.9% over the average GAssist accuracy. This shows how with very few rule sets
we can significantly boost the performance of GAssist.

5 Ensembles for Ordinal Classification

5.1 Motivation

The motivation for developing this kind of ensembles comes from our research in
Bioinformatics, specially in Protein Structure Prediction (PSP). In this research
area there are many features related to different properties of the complex 3D
structure of proteins, some of these features are continuous like solvent acces-
sibility [24]. Other features are defined as an integer, potentially having a high
cardinality, such as contact number [6] or recursive convex hull [8]. Predicting
these features can help improving the general problem of predicting the full 3D
structure of a protein. If we have to predict these features using classification
techniques we need to discretize them into a certain number of states. Therefore,

Empirical Evaluation of Ensemble Techniques 263

we end up generating a problem of ordinal classification and, depending on the
chosen number of states, potentially having a high number of classes.

5.2 Ensemble Definition

Our ensemble-based approach at ordinal classification is divided in two parts: (1)
decomposition of the original N classes dataset into several binary sub-datasets
and (2) integration of the models generated for each dataset to produce a final
N-classes prediction.

Hierarchical datasets generation. The generation of the binary datasets
works as follows:

1. We have an original dataset with N ordinal classes
2. We select a certain cut-point between the classes with the following criterion:

we will select the cut-point that produces the most balanced sets in terms
of number of instances at left and right of the cut-point

3. We generate a binary dataset from the N classes dataset: instances belonging
to classes below the cut-point will be labelled as class 0. Instances belonging
to classes over the cut-point will be labelled as class 1

4. The steps 2 and 3 will be repeated recursively for the instances to the left
and to the right of the cut-point, until we arrive to the trivial case: having
a binary dataset

5. Finally, GAssist is run several times on each of the N-1 datasets. The binary
model at each node of the hierarchy will be a consensus prediction ensemble
as defined in the previous section.

This process will effectively convert a N classes ordinal classification domain
into N-1 binary classification domains organized in a hierarchical way. The struc-
ture of this hierarchical ensemble is represented in figure 2 for a 10 classes dataset.
The root node separates between examples with a class < 5 and class ≥ 5. This
node will be trained with the whole dataset, assigning class 0 to the examples
of the original classes 0 through 4 and class 1 to examples with an original class
ranging from 5 to 9. Then, we will take the examples with classes ranging from
0 to 4 (the examples that had class 0 at the root node) and we will train a new
node with them. This node will learn how to separate between examples with a
class < 3 and a class ≥ 3. Again, a binary dataset will be generated to do so.
Examples of classes 0 to 2 will have class 0. Examples of classes 3 and 4 will have
class 1. Afterwards, we will use the examples from the original classes 0 through
2 to learn how to separate between classes 0..1 and class 2. Class 2 is a leaf of
the hierarchy and no model is needed for this branch. Finally, we would train
another model using examples from classes 0 and 1 to learn how to distinguish
them. The rest of the hierarchy of the ensemble would be generated and trained
in a similar way.

Unlike the Frank and Hall approach [9], these N-1 datasets will not have the
same number instances as the original training set: The first dataset, correspond-
ing to the root of the hierarchy will have the same number of examples as the

264 J. Bacardit and N. Krasnogor

N>=5N<5

N<3 N>=3 N<7 N>=7

Root node Classes=[0..9]

N<2 N>=8

N=2 N=7

Fig. 2. Representation of the hierarchical ensemble for ordinal classification. Nodes
(circles) with no descendants are already binary problems.

original training set. Then, the dataset corresponding to the left branch of the
root node will contain the examples having a class less than the cut point of the
root node. The dataset corresponding to the right branch of the root will have
the examples having a class greater than the cut point of the root node, etc.

Integration of the models into a single prediction. The ensemble predic-
tions will be performed as follows:

1. For each test instance, we will query the model at the root of the hierarchy
to determine if its class is lower or higher than the first cut-point.

2. If the root model predicts class 0, the next step is to predict this instance
using the model generated for the left branch of the root node

3. If the root model predicts class 1, the next step is to predict this instance
using the model generated for the right branch of the root node

4. The process will continue until we reach a leaf node

This process will also be faster than the Frank and Hall method, as only
log2(k) models will be queried, instead of all k −1 of them. Moreover, the model
used at each node to predict if a given instances is lower or higher than the cut
point is an ensemble itself, using the method described in the previous sections.

5.3 Empirical Evaluation of the Hierarchical Ensemble

We will use only one domain to illustrate the performance of this hierarchical
ensemble. This domain belongs to the Bioinformatics field, and specifically to
protein structure prediction (PSP) [6]. Proteins are heterogeneous molecules
that have a complex 3D structure very difficult to determine experimentally and
therefore needs to be predicted. Several different features can be predicted from
a proteins 3D structure. The domain used in this paper is called prediction of
average solvent accessibility [25]. This property is real-valued and therefore we

Empirical Evaluation of Ensemble Techniques 265

Table 5. Confusion matrix of the hierarchical classifier on a test set of the average
solvent accessibility domain. Each cell contains the percentage of instances of the class
in the row predicted as the class in the column.

Predicted class

R
ea

l
cl

as
s

0 1 2 3 4 5 6 7 8 9
0 50.0 0.0 0.0 33.3 16.7 0.0 0.0 0.0 0.0 0.0
1 0.0 11.1 0.0 55.6 22.2 0.0 0.0 0.0 11.1 0.0
2 18.2 0.0 9.1 36.4 18.2 0.0 18.2 0.0 0.0 0.0
3 0.0 10.0 10.0 30.0 30.0 0.0 0.0 10.0 10.0 0.0
4 7.7 0.0 0.0 7.7 30.8 23.1 15.4 15.4 0.0 0.0
5 0.0 0.0 0.0 0.0 25.0 0.0 50.0 25.0 0.0 0.0
6 0.0 0.0 0.0 25.0 0.0 0.0 37.5 25.0 12.5 0.0
7 0.0 0.0 0.0 0.0 0.0 11.1 22.2 22.2 44.4 0.0
8 0.0 0.0 0.0 0.0 0.0 5.6 11.1 44.4 27.8 11.1
9 0.0 0.0 0.0 0.0 0.0 8.3 0.0 33.3 25.0 33.3

Table 6. Confusion matrix of the flat ensemble on a test set of the average solvent
accessibility domain. Each cell contains the percentage of instances of the class in the
row predicted as the class in the column.

Predicted class

R
ea

l
cl

as
s

0 1 2 3 4 5 6 7 8 9
0 83.3 0.0 0.0 0.0 0.0 16.7 0.0 0.0 0.0 0.0
1 77.8 11.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1
2 54.5 18.2 0.0 0.0 0.0 27.3 0.0 0.0 0.0 0.0
3 50.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0
4 30.8 7.7 0.0 0.0 0.0 30.8 7.7 0.0 15.4 7.7
5 25.0 0.0 0.0 0.0 0.0 25.0 0.0 0.0 50.0 0.0
6 12.5 12.5 0.0 0.0 0.0 12.5 0.0 0.0 37.5 25.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 22.2 66.7
8 0.0 0.0 0.0 0.0 0.0 11.1 0.0 0.0 27.8 61.1
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 83.3

need some criterion to convert it into an ordinal set of classes. We will use the
equal frequency discretization algorithm [26] for this task, dividing the domain
into 10 ordinal classes.

The hierarchical ensemble obtained an accuracy of 23.9±3.0, while a flat en-
semble of GAssist models performing normal classification, without any specific
knowledge of the intrinsic class order, obtained an accuracy of 22.1±4.6. For ref-
erence, please note that Solvent Accessibility prediction accuracy for 10 classes
with the kind of input information used in this paper ranges from 20 to 24%
[25].

The performance difference is not significant, but the behaviour of both ap-
proaches is quite different: Table 5 contains the confusion matrix on one of the
test folds for the hierarchical classifier, while table 6 contains the confusion ma-
trix for the flat ensemble. The predictions of this domain are usually fed back
into another PSP prediction task. Therefore it is important that, in the case
of a mis-classification, the wrong predicted class is close to the real class in
the intrinsic class order. The hierarchical classifier achieves this objective much
better that the flat ensemble, as most of the predictions appear quite close to
the diagonal. Numerically, we can compute the behaviour difference as the av-
erage misclassification penalty (AMP), defining the misclassification penalty as

266 J. Bacardit and N. Krasnogor

the distance in the intrinsic class order between the real and predicted classes
of each test instance. The hierarchical ensemble obtained an AMP of 1.7±0.2,
while the flat ensemble obtained an AMP of 2.0±0.2. In this case, the AMP
difference between both systems was significant, according to the t-tests with
95% confidence level.

6 Conclusions and Further Work

This paper has empirically studied the use of ensemble techniques in combina-
tion with Learning Classifier Systems, specifically using GAssist, a Pittsburgh
approach LCS. Two types of techniques are studied. The first kind of ensem-
ble performs a Bagging-style consensus prediction, while the second one is an
hierarchical ensemble intended to deal with ordinal classification domains.

These methods are not really new contributions, just variations of already
existing techniques, but the experiments reported in the paper illustrate that
they are very useful in combination with GAssist. The first one significantly
boosts the performance of GAssist on several domains, even when using very
few rule sets per ensemble, while the other one helps GAssist minimize the
importance of the mis-classifications, which is an issue of concern in ordinal
domains.

For future work, it would be interesting to determine how we can tweak GAs-
sist to provide the correct models to the ensemble in order to maximize the
accuracy of the consensus prediction. For the hierarchical ensemble, a possible
future line is to study other policies to partition the ordinal domain into sev-
eral binary sub-domains, such as the ones described in the related work section.
A question always open in ensemble research and very difficult to address is
the interpretability of the ensembles. We would like to investigate how we can
improve this issue in our context. Finally, checking the accuracy-computational
cost trade-off of these ensemble techniques would be very useful.

Acknowledgements

We acknowledge the support of the UK Engineering and Physical Sciences Re-
search Council (EPSRC) under grants GR/T07534/01 and EP/E017215/1. We
are grateful for the use of the University of Nottingham’s High Performance
Computer.

References

1. Various authors: Special issue on integrating multiple learned models. Machine
Learning 36 (1999)

2. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)
3. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Inter-

national Conference on Machine Learning, pp. 148–156 (1996)

Empirical Evaluation of Ensemble Techniques 267

4. Bacardit, J.: Pittsburgh Genetics-Based Machine Learning in the Data Mining era:
Representations, generalization, and run-time. PhD thesis, Ramon Lull University,
Barcelona, Catalonia, Spain (2004)

5. Bacardit, J., Butz, M.V.: Data mining in learning classifier systems: Comparing
XCS with GAssist. In: Advances at the frontier of Learning Classifier Systems, pp.
282–290. Springer, Heidelberg (2007)

6. Bacardit, J., Stout, M., Krasnogor, N., Hirst, J.D., Blazewicz, J.: Coordination
number prediction using learning classifier systems: performance and interpretabil-
ity. In: GECCO 2006: Proceedings of the 8th annual conference on Genetic and
evolutionary computation, pp. 247–254. ACM Press, New York (2006)

7. Stout, M., Bacardit, J., Hirst, J.D., Krasnogor, N., Blazewicz, J.: From hp lattice
models to real proteins: Coordination number prediction using learning classifier
systems. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler,
R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G.,
Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 208–220. Springer,
Heidelberg (2006)

8. Stout, M., Bacardit, J., Hirst, J.D., Krasnogor, N.: Prediction of recursive convex
hull class assignments for protein residues. Bioinformatics (in press, 2008)

9. Frank, E., Hall, M.: A simple approach to ordinal classification. In: Proc 12th Eu-
ropean Conference on Machine Learning, pp. 145–156. Springer, Heidelberg (2001)

10. Bacardit, J., Stout, M., Hirst, J.D., Sastry, K., Llora, X., Krasnogor, N.: Auto-
mated alphabet reduction method with evolutionary algorithms for protein struc-
ture prediction. In: Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation (GECCO2007), London, England, pp. 346–353. ACM
Press, New York (2007)

11. Stout, M., Bacardit, J., Hirst, J.D., Blazewicz, J., Krasnogor, N.: Prediction of
residue exposure and contact number for simplified hp lattice model proteins using
learning classifier systems. In: Applied Artificial Intelligence, Genova, Italy, pp.
601–608. World Scientific, Singapore (2006)

12. Stout, M., Bacardit, J., Hirst, J.D., Smith, R.E., Krasnogor, N.: Prediction of
topological contacts in proteins using learning classifier systems. Soft Computing,
Special Issue on Evolutionary and Metaheuristic-based Data Mining (EMBDM)
(in press, 2008)

13. Llorà, X., Bacardit, J., Bernadó, E., Traus, I.: Where to go once you have evolved a
bunch of promising hypotheses? In: Advances at the frontier of Learning Classifier
Systems (2006)

14. Bull, L., Studley, M., Whittley, A.J.B., I.: On the use of rule sharing in learning
classifier system ensembles. In: Proceedings of the 2005 Congress on Evolutionary
Computation (2005)

15. Kramer, S., Widmer, G., Pfahringer, B., de Groeve, M.: Prediction of ordinal
classes using regression trees. Fundam. Inform. 47, 1–13 (2001)

16. Kramer, S.: Structural regression trees. In: Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI 1996), pp. 812–819. AAAI Press/MIT
Press (1996)

17. DeJong, K.A., Spears, W.M., Gordon, D.F.: Using genetic algorithms for concept
learning. Machine Learning 13, 161–188 (1993)

18. Bacardit, J., Goldberg, D.E., Butz, M.V.: Improving the performance of a pitts-
burgh learning classifier system using a default rule. In: Kovacs, T., Llorà, X.,
Takadama, K., Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2003.
LNCS (LNAI), vol. 4399, pp. 291–307. Springer, Heidelberg (2007)

268 J. Bacardit and N. Krasnogor

19. Bacardit, J.: Analysis of the initialization stage of a pittsburgh approach learning
classifier system. In: GECCO 2005: Proceedings of the Genetic and Evolutionary
Computation Conference, vol. 2, pp. 1843–1850. ACM Press, New York (2005)

20. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)
21. Bacardit, J., Goldberg, D.E., Butz, M.V., Llorà, X., Garrell, J.M.: Speeding-up

pittsburgh learning classifier systems: Modeling time and accuracy. In: Yao, X.,
Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe,
J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp.
1021–1031. Springer, Heidelberg (2004)

22. Blake, C., Keogh, E., Merz, C.: UCI repository of machine learning databases
(1998), http://www.ics.uci.edu/mlearn/MLRepository.html

23. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

24. Rost, B., Sander, C.: Conservation and prediction of solvent accessibility in protein
families. Proteins 20, 216–226 (1994)

25. Richardson, C., Barlow, D.: The bottom line for prediction of residue solvent ac-
cessibility. Protein Eng. 12, 1051–1054 (1999)

26. Liu, H., Hussain, F., Tam, C.L., Dash, M.: Discretization: An enabling technique.
Data Mining and Knowledge Discovery 6, 393–423 (2002)

http://www.ics.uci.edu/mlearn/MLRepository.html

Technology Extraction of Expert Operator Skills
from Process Time Series Data

Setsuya Kurahashi1 and Takao Terano2

1 University of Tsukuba, 3-29-1 Otsuka, Bunkyo, Tokyo 112-0012, Japan
kurahashi@gssm.otsuka.tsukuba.ac.jp

2 Tokyo Institute of Technology, 4259 Nagatsuda-Cho Midori-ku,
Yokohama 226-8502, Japan
terano@dis.titech.ac.jp

Abstract. Continuation processes in chemical and/or biotechnical
plants always generate a large amount of time series data. However, since
conventional process models are described as a set of control models, it
is difficult to explain complicated and active plant behaviors. To uncover
complex plant behaviors, this paper proposes a new method of developing
a process response model from continuous time-series data. The method
consists of the following phases: (1) Reciprocal correlation analysis; (2)
Process response model; (3) Extraction of control rules; (4) Extraction
of a workflow; and (5) Detection of outliers. The main contribution of
the research is to establish a method to mine a set of meaningful control
rules from a Learning Classifier System using the Minimum Description
Length criteria and Tabu search method. The proposed method has been
applied to an actual process of a biochemical plant and has shown its
validity and effectiveness.

1 Introduction

Although there is a lot of theoretical research on Learning Classifier Systems
(LCSs), very few applications have been reported in the literature. This paper
describes the practical application of LCSs in order to extract plant operation
knowledge from actual operation data of a biochemical plant. So far, many kinds
of automatic control systems have been established in such plants as chemical
plants. Operator confirmation and manual procedures are essential for a wide
variety of products used in small quantities requiring stringent quality control,
such as advanced materials for Liquid Crystal Display (LCD), pharmaceutical
products, and so on. The quality control of biochemical plants has also become
one of the most important issues in the field of food-safety.

However, from 2007 onward, many expert operators, members of the “baby-
boom generation”, will be coming up for retirement. In addition, many manu-
facturing sites have recruited a lot of foreign laborers and temporary employees,
due to global competition. These sites are faced with problems in terms of many
less-skilled laborers. The time, when expert operators with excellent skills ac-
quired through long experience will leave their manufacturing sites, one after

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 269–285, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

270 S. Kurahashi and T. Terano

another, is just around the corner. In many manufacturing areas, how to pass
on expert operator skills to future generations has become a big issue.

In the past, transfer functions like the delay time function have built up a
process model by describing an individual response process. The transfer func-
tion is used in analyses of input/output behaviors. It is derived using the Laplace
transform in control theory. However, process circumstances might change sig-
nificantly, according to variations of infused material or operating conditions.
Thus, automated acquisition or data mining of processes from actual daily data
is desirable to manage these changes. In this research, we propose a heuristic
search method for plant operation rules, which could provide guidance on hu-
man operators, building up a process response model from a large amount of
time series data. The basic principles of the model are 1) to maximize the corre-
lation coefficient among time series data, and 2) to apply LCSs with Minimum
Description Length (MDL) criteria [1]. The paper also describes results from
applying the proposed method to actual operation data for a biochemical plant.

The remainder of this paper is organized as follows: In the next section, we
describe the research objective and the problem description. In the third section,
we propose principles of LCS with MDL and improvement rate based MDL
criteria. In the forth and fifth sections, we present experimental results and
compare them with conventional methods. In the sixth and seventh sections, we
present extracting knowledge of workflow from workers and detection of outliers.
In the last section, we conclude with a summary.

2 Research Objective
2.1 A Target Plant

We are dealing with a biochemical plant with a distillation tower as in Figure 1.
In the distillation tower, low-pressure treatment performs constituent separation
after the basic ingredient is infused into the tower. Example: Figure 2 is the
normalized data of one biochemical plant. “Normalized” means that each process
value is normalized with the same range between 0.0 and 1.0. As the figure shows,
it is quite complicated, and seems to be difficult to obtain useful data from the
data shown in the figure using conventional methods.

Simply observing normalized data, as shown in Figure 2, is not enough, and
it is almost impossible to read what kind of relationship exists among process
data. Operators, who are those who actually operate the plant and learn about
the process characteristics empirically, control the whole plant by frequently
adjusting control settings or by manual operation.

In contrast, with the proposed method it is possible to obtain simple but
persuasive knowledge like Figure 3. We will explain this rule in the following
sections.

2.2 Problem Description

The purpose of this research is to extract significant information from such time
series data that appear to be complicated. The following phases in Figure 4 show
how to build a model up in order to analyze the process data.

Technology Extraction of Expert Operator Skills 271

F1

F2

F3

F4

F*: Flow Indicator
T*: Temperature Indicator
P*: Pressure Indicator
L*: Level Indicator

F5

F6

F7

F8

F9

T1

T3

T4

T2

distillation
tower

L1

L2

P1

P2

Fig. 1. Outline of the biochemical plant

0

0.2

0.4

0.6

0.8

1

1 101 201 301 401 501 601 701

minute

process value

Fig. 2. Normalized process data

272 S. Kurahashi and T. Terano

25% < F3 ≤ 50% and 75% < F4 and F3 is down then 75% < T2

“F3 flow is from 25% to 50%, and F4 flow is 75% or more, and F3 flow is decreasing,
T2 temperature becomes 75% or more.”

Fig. 3. Acquired knowledge

Process data
acquisition

Normalization

Reciprocal
correlation analysis

Process response
model

Extraction of
a workflow

Extraction of
a control rule

Variation analysis
and improvement

Plant operation

build up

1

2

3

4

8

7

6

5

Fig. 4. Analyzing phases

1. Process data acquisition phase
Various kinds of process data are collected and stored in a database.

2. Normalization phase
Each piece of process data has a different range, such as 0.0 - 300.0 kPa or 0
- 1600 degrees C. All data are normalized between 0.0 and 1.0 to deal with
the same range.

3. Reciprocal correlation analysis phase
Two sets of normalized process data are selected and searched for the time
difference that indicates the biggest correlation between each process value
by gradually shifting the time.

4. Process response model phase
Like the response model, the phase describes the relationship among the
process data from the shifted time and the correlation coefficient.

5. Extraction of a control rule phase
The process extracts the control rule by executing LCS that handles specified
process data as a process response model class.

Technology Extraction of Expert Operator Skills 273

6. Extraction of workflow phase
The LCS that counts occurring time of operational events and process data
is executed so as to find the workflow.

7. Variation analysis and improvement phase
A current workflow and an extracted workflow are compared, in order to an-
alyze the difference. The old workflow is improved for the operation support
system.

8. Plant operation phase
A plant is operated with the new workflow, and process data is acquired
again. This build-up cycle runs repeatedly.

3 Principles of LCS with MDL

3.1 MDL Criteria

Operation rules of such plants require simple and clear descriptions in order for
operators to recognize the target process conditions. The concept of complexity
determines the data and the model describes it [2]. MDL criteria minimize the
complexity of the model and data [1,3]. We use it to minimize the complexity of
LCS. MDL criteria are shown as follows [4]: Here, m1 and m0 are each occurrence
numbers of y = 1 and y = 0, in data row ym = y1, ..., ym with length m. Here,
m = m1 + m0. Also, ci indicates 0 where each condition of the former part has
a wild card #, or 1 in other cases. And ti indicates the division number of the
process data in each condition; k indicates the number of conditions. Then, the
description length of data and model are as follows:

dataLength = mH(
m1

m
) +

1
2

log(
mπ

2
) + o(1),

modelLength =
k∑

i=1

ci(1 + log ti),

where, H(x) = −x log(x) − (1 − x) log(1 − x).

3.2 Improvement Rate Based MDL Criteria

Although the MDL principle generates a simple and safe model, this does not
always means the model is easy to understand. Thus, we apply the improvement
rate of association rules in data mining literature [5]. The following formula
expresses the improvement rate:

improvement =
P (ri|p)
P (ri)

,

where, P (ri) expresses the rate that the latter part ri appears without condition,
and P (ri|p) expresses the rate that the latter part ri appears with the condition
of the former part, p.

274 S. Kurahashi and T. Terano

Process data cases

If (p1
1∧ p2

1 ∧ p3
1)∨ (p1

2∧ p2
2 ∧ p3

2)… then r1

If (p1
1∧ p2

1 ∧ p3
1)∨ (p1

2∧ p2
2 ∧ p3

2)… then r2

If (p1
1∧ p2

1 ∧ p3
1)∨ (p1

2∧ p2
2 ∧ p3

2)… then rm

CF1

CF2

CFm

MDL
+

Improvement
rate

EvaluationClassification

Crossover/Mutation

SelectionReproduction

Fig. 5. Learning classifier system

The description length in MDL principles is calculated as follows: It is known
that probability distribution P (·), on the assembly of data row ym = y1, ..., ym

with length m, exists. Also, the length L(ym) of binary code string φ(ym) can
be expressed as

L(ym) = − log P (ym).

Expressing the occurrence rate in marketing basket analysis through a logarithm
with the same description length as the description length of MDL principles, it is
possible that the improvement rate is the differential of the information amount
between before-refining and after-refining, with certain conditions. Therefore,
we handle the improved information amount and the description length in MDL
principles at the same time. So, MDL criteria are expanded, in order to max-
imize the differential of the description length (model length + data length)
obtained for classification by LCS. The following method shows the calculation
of the learned classifier weight. Here, dataLengthf and modelLengthf express
the initial description length of data and model, dataLengthl and modelLengthl

express the final description length of data and model. The weight of classifier
is calculated by

DLfirst = dataLengthf + modelLengthf ,

DLlast = dataLengthl + modelLengthl,

Weight = DLfirst − DLlast.

Technology Extraction of Expert Operator Skills 275

When applying a rule and the rule is simple, the knowledge, which is unknown
when there are no rules, reveals another unpredictable rule [6]. The expansion
proposed here allows for detailed evaluation of the simple rule that can reveal a
valuable fact with copious amounts of information. Evaluating all classifiers hit
in the former part, counting the result of its classifier allows for calculation of
the estimated value of a classification error. MDL criteria are used to get the
weight, selecting the smallest dataLength in the classification of results. Then
the learning classifier system is implemented to maximize the weight as a fitness
function.

3.3 Learning Classifier System

As a learning classifier system, a modified system based on the original LCS is
introduced [7,8,9,10]. This system corresponds to a lot of events, using the learn-
ing method it estimates event distribution by random sampling. Each individual
consists of a condition part (as disjunctive normal form) and of a conclusion.
Figure 5 shows the concept of the learning classifier system in this model. First
of all, random generated rules, set as classifiers, classify the process data. It is
possible to use other techniques such as rules generalized from input data. In this
case, we used random generated rules for simplicity. MDL criteria and the im-
provement rate evaluate these rules and classification results, and set the result
to CFi with MDL or the improvement rate of MDL. Therefore, in the case of
MDL criteria, each classifier is selected by MDL value as a maximization prob-
lem, and in the case of improvement MDL criteria, it is a minimization problem
using the improvement rate of MDL. To each classifier, a new classifier is gener-
ated, conducting tournament selection based on the obtained CFi, crossing and
mutation.

Table 1 shows the parameters and CFi of this Learning Classifier System.
The number of classifiers: 200, data: 9 items * 300min, crossover probability: 0.7,
mutation probability: 0.005. Each piece of numeric data was divided every 25%

Table 1. LCS Parameters

The number of process data items 9
Sampling time 1min
Collection time 300min
The division number of a condition value 4(25%)
The rate of change of a condition value 25%(up,stability,down)
The division number of a result value 4(25%)
The number of classifiers 200
Selection method Tournament
Crossover probability 0.7
Mutation probability 0.005 on a gene
CFi of MDL criteria DLlast = dataLengthlast + modelLengthlast

CFi of iMDL criteria DLfirst − DLlast

The number of Tabu lists(section 6) 10
The distance between solutions(section 6) Hamming distance

276 S. Kurahashi and T. Terano

after it normalized. It was also classified into downtrend, stability and uptrend,
respectively. When p is set as a conditional expression of the former part and r
is set as a conditional expression of the latter part, the structure of the classifier
becomes

p = (p1
1 ∧ p1

2... ∧ p1
k) ∨ (p2

1 ∧ p2
2... ∧ p2

k)...,
r = r1, r2, ..., rn.

The following is an example rule:

((T 1 ≤ 0.25) ∧ (0.25 < F3 ≤ 0.5) ∧ (F4 is up))∨
((0.5 < T 3 ≤ 0.75) ∧ (F5 is down) ∧ (F1 is stable))

then T2 ≤ 0.25.

The result ri shows all the possible results that the target event would obtain,
and counts the number of hits in all ri that hit in the former part. This gives an
estimated value of reliability for the latter part event, in accord with the agreed-
upon event of the former part. The pressure toward generalization is preformed
by the MDL metric.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0
9

1
2
1

1
3
3

1
4
5

1
5
7

1
6
9

1
8
1

1
9
3

2
0
5

2
1
7

2
2
9

2
4
1

2
5
3

2
6
5

2
7
7

2
8
9

3
0
1

3
1
3

3
2
5

3
3
7

3
4
9

0<θ≦1.95pi
0.1*Sin(theta*10)+0.58+N(0,0.1)
0.001*Sin(theta*10)+0.27+N(0,0.1)

1.95π<θ≦2pi
-0.225*Sin(theta*10)+0.58+N(0,0.1)
-0.3*Sin(theta*10)+0.27+N(0,0.1)

0<θ≦2pi
0.1*Sin(theta*10)+0.33+N(0,0.1)
0.1*Cos(theta*10)+0.33+N(0,0.1)

0.5 < Tag3 → 0.75 < Tag1
MDL=28.4, iMDL=20.2

MDL=214.7, iMDL=30.7
Tag2 ≦ 0.25 → Tag1 ≦ 0.5

MDL : lower is better
iMDL : higher is better

Tag1

Tag3

Tag2

Fig. 6. Comparison between MDL and iMDL

Technology Extraction of Expert Operator Skills 277

3.4 Comparison between MDL and iMDL

Figure 6 shows experiments about LCS based on MDL(MDL-LCS) and Im-
provement MDL(iMDL-LCS). These test data were generated by functions of
sine, cosine, and normal distribution. Tag1 is the target data of this analysis.

MDL-LCS detected phenomena in a right small circle in Figure 6. The rule
was “0.5 < Tag3 then 0.75 < Tag1” (If the process value of Tag3 is more than
0.5, then the process value of Tag1 is more than 0.75). The MDL value was 28.4
at the time.

Although MDL-LCS detected Tag3, it seems to be significantly related to
Tag1. On the other hand, iMDL-LCS detected phenomena in a left large circle
in Figure 6. This rule is different from the previous rule with MDL-LCS.

iMDL-LCS detected the following rule,“Tag2 ≤ 0.25 then Tag1 ≤ 0.5.” MDL-
LCS has the ability to detect an outlier, but it is easy to discover the rule just
by looking, since it stands out. On the contrary, iMDL-LCS has the ability to
detect hidden phenomena.

4 Experiments

The proposed method has been applied to practical plant operation data, by
building a model according to the method shown in Figure 4.

4.1 The Response Model

In the case of the continuation process, a correlation is recognized among the
data. The following operation produces a reciprocal correlation coefficient of
time series data:

1. Select time series data x and y that of couple process tags. When k is set
as time shift amount of each tag and x̄, ȳ are averages, the next formula
calculates the next reciprocal correlation coefficient of k, rxy(k).

rxy(k) =

∑T
t=k+1(xt−k − x̄)(yt − ȳ)√∑T

t=k+1(xt−k − x̄)2
√∑T

t=1(yt − ȳ)2
.

2. Obtain k that shows maximum correlation.

max
k

rxy(k).

This operation, which consists of all data, produces a maximum correlation coef-
ficient table and shift time table. Figure 7 is the result produced by the operation
of a reciprocal correlation analysis. It shows coefficients of other process data to
T2. Table 2 and Table 3 show a part of maximum correlation coefficients and
their shift time.

The above operation leads to the building of a process response model, ex-
tracting tags with high correlation from a quantity of time series tag data. Figure
8 shows an example. It shows the structure of process response, by means of time
series correlations among process tags and the time shift information.

278 S. Kurahashi and T. Terano

min

correlation

Fig. 7. Reciprocal Correlation Analysis

4.2 Heuristic Search for Operation Rules

In the actual operation, it is significant to discover a control point that makes
the final quality stable. The LCS with MDL criteria and the improvement rate,
searches for the control rule targeting tag data with high correlation obtained by
the process response model. Figure 9 shows an example of the classifier obtained.
At this moment, the improvement rate is 3.1, and the MDL value is 32.9 bit.
The next example shows the classifier in the case that considers the improve-
ment rate. In this case, the improvement rate is 6.6, and the MDL value is 54.8
bit. The former becomes a simpler model, although the result is close to “com-
monplace” with a low improvement rate. In the case that gives consideration to
the improvement rate, in addition to the MDL value, an unpredictable rule is
more easily revealed. As a result of an interview with the person in charge of the

Table 2. Maximum correlation coefficient

Maximum cor F4 F2 F3 T2 F1
F4 1.00 0.41 -0.32 0.32 -0.28
F2 0.41 1.00 -0.57 -0.63 -0.46
F3 -0.32 -0.57 1.00 -0.80 -0.53
T2 0.32 -0.63 -0.80 1.00 0.66
F1 -0.28 -0.46 -0.53 0.66 1.00

Technology Extraction of Expert Operator Skills 279

Table 3. Maximum correlation shift time

Shift time F4 F2 F3 T2 F1
F4 0 -10 -14 -22 -26
F2 10 0 -5 53 -7
F3 14 5 0 -5 -60
T2 22 -53 5 0 -55
F1 26 7 60 55 0

F2

F1 T2 F3

F2

F4

53/-0.6

55/0.7

60/0.5 22/0.3

14/-0.35/-0.8

7/0.5

5/-0.6

10/0.4

min/correlation

Fig. 8. Process response model

operation, T2(temperature of the tower) provides an important control point
that greatly affects product constituent quality in this biochemical plant, and it
is too difficult to control the temperature. In order to control it more accurately,
the classification rule that operators find hard to be aware of becomes precious
information. In the case of Figure 9, F2 flow is expected to be related to T2
temperature, but it is not noticeable that F3 flow transition rate away from T2,
or F4 flow are also connected to T2. Furthermore, in Figure 10 too, comparing
with the F1 ingredient flow which directly infused into the distillation tower
and the F2 return flow, operators found it hard to see that the F3 flow away
from T2 is related to T2 temperature. As mentioned above, the application of
Minimum Description Length criteria considering the improvement rate results
in such unpredictable information.

MDL:
(75% < F2) and (75% < F3) then 50% < T2
“F2 flow is 75% or more, and F3 flow is 75% or more, then T2 temperature becomes
50% or more.”
MDL+Improvement:
(25% < F3 ≤ 50%) and (75% < F4) and (F3 is down) then 75% < T2
“F3 flow is from 25% to 50%, and F4 flow is 75% or more, and F3 flow is decreasing,
T2 temperature becomes 75% or more.”

Fig. 9. Control rules for Recipe-1

280 S. Kurahashi and T. Terano

MDL:
(50% < F1 ≤ 75% and 25% < F4 ≤ 50% and F4 is up) or (75% < F2) then T2 ≤ 50%
MDL+Improvement:
(75% < F2 and 50% < F3 ≤ 75% and F4 is up) or (75% < F2) then T2 ≤ 25%

Fig. 10. Control rules for Recipe-2

5 Comparison with Conventional Methods

Time-series-data analysis and the time series model have been developed in
the field of statistics. In the field of economics also, many models that es-
timate economic indicators have been reported. There has been a lot of re-
search in data mining to obtain useful information from a large amount of data
[11,12,13,14,15,16,17,18,19]. Also the MDL principle has been applied in many
fields, for example, Genetic Programming and LCSs as Bloat control and gener-
alization pressure [20,21,10]. Several indicators are proposed in order to measure
how interesting the extracted knowledge is: J -Measure, i-Measure, I -Measure
or IShannon-Measure for example [22,23,6]. However, these indicators do not di-
rectly represent the length of the model nor the classified data. Moreover, they
do not give a human operator specific operation rules.

A simple application of decision tree methods also produces very large trees.
For example, our results on actual process data using C4.5 [24] have generated
a huge tree with 87 nodes before pruning, 43 nodes even after pruning. It is
difficult for human operators to understand the meaning. They need a simple
model to represent authentic information.

Table 4 shows results of the learning classifier system with decision tree C4.5,
the learning classifier system on the basis of MDL + improvement rate criteria.

Table 4. Decision tree C4.5, LCS on MDL and MDL+Imprv

MDL Imprv-rate Model-length Errors
C4.5 410.4 297.2bit 12.0%
C4.5rule/pruning 177.0 50.8bit 14.3%
MDL criteria 121.3 3.9 9.8bit 6.7%
MDL+imprv 109.4 5.1 9.8bit 7.0%

The classification error rate indicates a lower value in MDL + improvement
rate criteria, than decision tree C4.5 before and after pruning. In the rule de-
scription length, the MDL + improvement rate criterion classifier considerably
decreases compared to C4.5.

6 Extracting Knowledge of Workflow from Workers

Using the proposed method, we also generated workflow processes for operations.
First, we collect event data such as switching (on/off) and value setting opera-
tions with time stamps. Then, using the proposed methods, we search for rules

Technology Extraction of Expert Operator Skills 281

Population(t) Candidates(t+1)

Rule
Selection

Tabu List
(Long Term)

Reject

Reject

Reject

Re-selection

Re-selection

Re-selection

Replace

Fig. 11. TABU-LCS

0

50

100

150

200

250

1 6

1

1

1

6

2

1

2

6

3

1

3

6

4

1

4

6

5

1

5

6

6

1

6

6

7

1

7

6

8

1

8

6

9

1

9

6

MDL

Iteration

(1)

(1)MDL=109: 0.5<F2<=0.75

→ T2 <= 0.25

TABU list

(2)

(2)MDL=169: 0.5<F2<=0.75 & Aspect=1

→ T2 <= 0.25

(3)

(3)MDL=180: Aspect=1 & MOUT2=1

→ T2 <= 0.25
(4)MDL=187: Aspect=1 & MOUT1=1 & MOUT2=1

→ T2 <= 0.25

(4)
(5)

(5)MDL=210: 0.25<F3<=0.5, Aspect=1 & MOUT1=1 & MOUT2=1

→ T2 <= 0.25

MOUT1 = 1(Close)
and Aspect = 1(Sticky) after 15min
and MOUT2 = 1(Close)

Then T2 <= 25% after 20min

Fig. 12. The experiment of TABU-LCS

282 S. Kurahashi and T. Terano

Start

T2 > 25%

MOUT1=Close

Sticky?

MOUT2=Close

End

Wait > 20min

Wait >15min

T2 � 25%

Fig. 13. Expert’s workflow

during given time intervals. Finally, we sort the acquired rules with the time
key, and then we get the corresponding workflow. However, a workflow consists
of several rules that are operated simultaneously on shifted data. MDL-LCS
actually extended multiple classifiers originated by Pittsburgh LCS [8,9] and
found the following rule.

“0.5 < F2 ≤ 0.75 then T 2 ≤ 0.25, # then #, ...” It did not find other rules
in spite of LCSfs ability to detect sets of rules.

That is why the MDL principle reduces model length, and other rules at the
same time are redundant for classification of abnormal conditions. In addition,
it is important to find the second or third optimum classifier, since experts often
operate various procedures that are different from a typical one.

Hence we utilize a TABU-Search method to solve the problem [25]. TABU-
Search prohibits some operations from falling into local solutions. Figure tabu
briefly explains LCS with TABU-Search. A TABU list is put in place between
the Classifier Population and the Candidates Set. When selecting candidates
from the population, if a classifier has the same gene as a classifier (TABU-CF)
in the TABU list, it will be refused by the TABU list. Then another classifier
is re-selected. Besides, if a classifier has more fitness value than a TABU-CF, it
will be replaced as a new TABU-CF.

Figure 12 is the result of experiments with TABU-LCS. First, TABU-LCS
found a simple rule whose MDL was 109. This rule was stored in the TABU
List. Then TABU-LCS found a second rule whose MDL was 169. TABU-LCS
eventually found five rules from the process data.

Technology Extraction of Expert Operator Skills 283

It’s easy to compose a workflow using these rules. Figure 13 shows the work-
flow from these rules. Although the workflow in this figure is very small, it
certainly occurs in this process. The method enables us to extract implicit plant
operation knowledge from both manual operation data and process data. Such
knowledge is useful in transferring experts’ special skills to inexperienced oper-
ators.

6.1 Detection of Outliers

Outlier detection is a fundamental issue in data mining. It has been considered
in [26], in which statistical outlier detection algorithms have been proposed.
However, they were detection algorithms on statistical models. Process data in-
cludes a lot of event data, which are records of operations and process alarms,
so it is difficult to assume a statistical model. Thus, we used the LCS to detect
outliers. The data dealt with the following stages: (1) Deviation between process
values and targeted values, called golden batch data, is measured, (2) Cases
with deviation of more than a threshold value are selected, (3) Process condi-
tions and workflow of the cases are detected using the LCS we proposed, and (4)
Outliers are detected using process conditions and workflow. The results of the
experiments have indicated that our model would detect errors of 0.5 percent or
less. It was verified that the odds ratio, which was 3.3, was statistically signifi-
cant.

7 Conclusion

This paper has proposed a new method of extracting plant operation knowledge
from time series data using LCSs with the MDL principle and Tabu search.
The method has generated useful but simple operation knowledge with high
reliability. It enables us to extract implicit plant operation knowledge from both
manual operation data and process data. Such knowledge is useful in transferring
experts’ special skills to inexperienced operators.

The method consists of the following phases: (1) Process data acquisition
phase; (2) Normalization phase; (3) Reciprocal correlation analysis phase; (4)
Process response model phase; (5) Extraction of a control rule phase; (6) Ex-
traction of a workflow phase; (7) Variation analysis and improvement phase;
and (8) Plant operation phase. Additionally, we have shown that the extracted
workflow has the ability to detect outliers of process data.

The main contribution of the research is to establish a method of mining a
set of meaningful control rules from the Learning Classifier System using the
Minimum Description Length criteria with improvement rate and Tabu search
method. The effectiveness of the proposed method has been demonstrated using
actual plant data. We believe that the proposed method is one of the practical
LCS applications.

284 S. Kurahashi and T. Terano

References

1. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)
2. Adami, C.: Introduction to Artificial Life. Springer, NY (1998)
3. Mehta, M., Rissanen, J., Agrawal, R.: MDL-based decision tree pruning. In: Pro-

ceedings of the First International Conference on Knowledge Discovery and Data
Mining (KDD 1995), pp. 216–221 (1995)

4. Yamanishi, K.: A learning criterion for stochastic rules. Machine Learning 8, 165–
203 (1992)

5. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery
of assosiation rules. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy,
R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI
Press and The MIT Press (1996)

6. Hilderman, R.J., Hamilton, H.J.: Knowledge Discovery and Measures of Interest.
Kluwer Academic Publishers, Dordrecht (2001)

7. Holland, J.H., Reitman, J.S.: Cognitive systems based on adaptive algorithms.
SIGART Bull. (63), 49 (1977)

8. Smith, S.: A learning system based on genetic adaptive algorithms. In: Ph.D thesis.
University of Pittsburgh (1980)

9. Smith, S.: Flexible learning of problem solving heuristics through adaptive search.
In: Proceedings 8th International Joint Conference on Artificial Intelligence (Au-
gust 1983)

10. Butz, M.V., Pelikan, M., Llorà, X., Goldberg, D.E.: Extracted global structure
makes local building block processing effective in XCS. In: GECCO 2005: Proceed-
ings of the 2005 conference on Genetic and evolutionary computation, pp. 655–662.
ACM, New York (2005)

11. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley Publishing Company, Inc., Reading (1989)

12. Adriaans, P., Zantinge, D.: Data Mining. Addison-Wesley, Reading (1996)
13. Weiss, S.M., Indurkhya, N.: Predictice Data Mining, A Practical Guide. Morgan

Kaufmann Publishers, Inc., San Francisco (1997)
14. Berndt, D.J., Clifford, J.: Finding patterns in time series: a dynamic programming

approach, 229–248 (1996)
15. Hetland, M.L., Saetrom, P.: Evolutionary rule mining in time series databases.

Mach. Learn. 58(2-3), 107–125 (2005)
16. Harvey, A.C.: Time Series Models. Prentice Hall/Harvester (1993)
17. Stock, J.H., Watson, M.W.: A probability model of the coincident economic indica-

tors. Working Paper 2772, National Bureau of Economic Research (November 1988)
18. Freitas, A.A.: Data mining and knowledge discovery with evolutionary algorithms.

Springer, Heidelberg (2002)
19. Barry, A., Holme, J., Llora, X.: Data mining using learning classifier systems. In:

Bull, L. (ed.) Applications of Learning Classifier Systems, pp. 15–67. Springer,
Heidelberg (2004)

20. Iba, H., de Garis, H., Sato, T.: Genetic programming using a minimum description
length principle. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming,
pp. 265–284. MIT Press, Cambridge (1994)

21. Bacardit, J., Garrell, J.M.: Bloat control and generalization pressure using the
minimum description length principle for a pittsburgh approach learning classifier
system. In: Kovacs, T., Llorà, X., Takadama, K., Lanzi, P.L., Stolzmann, W.,
Wilson, S.W. (eds.) IWLCS 2003. LNCS (LNAI), vol. 4399, pp. 59–79. Springer,
Heidelberg (2007)

Technology Extraction of Expert Operator Skills 285

22. Smyth, P., Goodman, R.M.: An information theoretic approach to rule induction
from databases. IEEE Transactions on Knowledge and Data Engineering 4(4),
301–316 (1992)

23. Hilderman, R.J., Hamilton, H.J.: Heuristic measures of interestingness. In: Pro-
ceedings of the Third European Conference on the Principles of Data Mining and
Knowledge Discovery, pp. 232–241 (1999)

24. Quinlan, J.R.: C4.5:Programs for Machine Learning. Morgan Kaufman Publishers,
Inc., San Francisco (1993)

25. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht
(1997)

26. Yamanishi, K., Takeuchi, J.: A unifying approach to detecting outliers and change-
points from nonstationary data. In: The Eighth ACM SIGKDD(KDD2002) (2002)

Analysing Learning Classifier Systems in
Reactive and Non-reactive Robotic Tasks

Renan C. Moioli1, Patricia A. Vargas2, and Fernando J. Von Zuben1

1 Laboratory of Bioinformatics and Bio-Inspired Computing - LBiC
School of Electrical and Computer Engineer - FEEC/Unicamp Campinas-SP, Brazil

2 Centre for Computational Neuroscience and Robotics (CCNR)
Department of Informatics, University of Sussex,
Falmer, Brighton, BN1 9QH, United Kingdom

{moioli,vonzuben}@dca.fee.unicamp.br, p.vargas@sussex.ac.uk

Abstract. There are few contributions to robot autonomous navigation
applying Learning Classifier Systems (LCS) to date. The primary objec-
tive of this work is to analyse the performance of the strength-based
LCS and the accuracy-based LCS, named EXtended Learning Classifier
System (XCS), when applied to two distinct robotic tasks. The first task
is purely reactive, which means that the action to be performed can rely
only on the current status of the sensors. The second one is non-reactive,
which means that the robot might use some kind of memory to be able
to deal with aliasing states. This work presents a rule evolution anal-
ysis, giving examples of evolved populations and their peculiarities for
both systems. A review of LCS derivatives in robotics is provided to-
gether with a discussion of the main findings and an outline of future
investigations.

1 Introduction

The growing interest in the study of intelligence, particularly in the context of
embodied cognitive science, is responsible for the majority of sophisticated exper-
iments employing mobile robots lately. The embodied cognitive science estab-
lishes as its main methodology the development of experiments in autonomous
robot navigation and control. According to Pfeifer and Scheier [1], autonomous
robotics is considered an appropriate paradigm for studying the principles of
intelligence.

Nonetheless, a robotic control system that enables a robot to perform tasks
in the way a human being, or even an insect, does, is far from being achieved.
This is mainly because, first, there is a lack of high-quality information available
for decision making processes, second, there are multiple conflicting objectives
to be fulfilled, and third, usually the robot needs to tackle complex environment
dynamics.

In an effort to overcome those problems, evolutionary and reinforcement learn-
ing techniques have been increasingly applied to robot autonomous navigation
problems. One example of the application of such techniques is Evolutionary

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 286–305, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Analysing LCS in Reactive and Non-reactive Robotic Tasks 287

Robotics (ER). ER is a particularly novel field of research, which aims to apply
evolutionary computation techniques to evolve the robot morphology (hardware
design) and/or controllers for both real and simulated autonomous robots. In
spite of being a well-established research area with many achievements reported
in the literature [2], it has some intrinsic difficulties, mainly associated with the
time spent while evaluating an individual. Thus, some researchers favour the use
of reinforcement learning techniques, which seem to be more adequate to online
learning [3].

Towards the aim of combining evolution and learning in an integrated way,
Learning Classifier Systems (LCS), which were originally proposed by Holland
[4], emerge as an alternative. Furthermore, these systems can be considered an
appropriated framework for the synthesis of complex adaptive systems [5] and
models of inference process in cognitive systems [6].

However, according to Holmes and collaborators [7], there are challenges
still unexplored and limitations still to be alleviated in the field of LCS. Hence,
variants of these systems are being investigated based on their adaptive features
and also on problem peculiarities. Presently, the most investigated ones are: (i)
accuracy-based LCS, XCS [8], and its variants, XCSF [9], XCSMH [10]; (ii)
Anticipatory Classifier System, ACS [11]; (iii) Temporal Classifier System, TCS
[12]. It is opportune to highlight that Learning Classifier Systems are being
applied to diverse areas [13], from optimization problems [14] to time-series
analysis [15]. Nonetheless, there are few contributions to robot autonomous
navigation.

The primary objective of this work is to perform some performance analysis
involving the strength-based LCS and the accuracy-based LCS, named EXtended
Learning Classifier System (XCS). The rationale behind the choice of both sys-
tems, LCS and XCS, is threefold. Firstly, XCS is the most studied variant of
the LCS. Secondly, XCS was proposed in an attempt to develop a new credit
assignment procedure that could guide the classifier system to perform better
in situations where the strength-based fitness is unsuitable. Thirdly, all classi-
fier systems developed to date were inspired by the original LCS and thus it
is believed that the comparison between the currently most studied (XCS) and
the original one (LCS) could provide some insightful outcomes to the field of
robotics and also to the LCS community.

Moreover, it is envisaged that this work is an opportunity to clearly under-
stand the mechanisms of rule evolution and its peculiarities in the robotics do-
main for both systems, compiling the related work and consequently provid-
ing useful information for future research in the area. In addition, examples
of evolved populations are presented, illustrating the rules dynamics and the
resultant robot behaviour.

To embark on this endeavour two experiments are proposed. Experiment 1
presents a purely reactive task, while Experiment 2 has some aliasing states,
thus the robot might need to use some sort of memory to solve the task, as will
be further described in Section 5.

288 R.C. Moioli, P.A. Vargas, and F.J. Von Zuben

Fig. 1. Interaction of the classifier system with the environment

This paper is organized as follows. Section 2 introduces the fundamentals of
the LCS and XCS. Section 3 presents a review of related works in the literature.
Section 4 depicts the platforms used during the experiments. Section 5 describes
the experiments and reveals the results together with an analysis of the evolution
for each case. Finally, a discussion and future work are presented in Section 6.

2 Learning Classifier Systems Fundamentals

A LCS is composed of classifiers that represent the individuals of a popula-
tion. Each classifier corresponds to if-then rules, which have two distinct parts:
antecedent and consequent. The antecedent part defines which environmental
condition should the classifier be associated with. In other words, for each input
information (message) from the environment, there should be a classifier that
matches itself with this input and thus propose an action expressed by its con-
sequent part. Thereafter, depending on its “strength” (a sort of fitness based
value) and similarity to the message from the environment, the classifier will be
activated All activated classifiers compete in order to decide which one will act
on the environment Depending on the result of this action, the classifier that
originated this action can be penalized or rewarded (increasing or decreasing its
strength). Periodically, the classifier set or population undergoes an evolutionary
process, based on the strength of the classifiers, by means of a genetic algorithm
[16]. Figure 1 illustrates the interaction between LCS and the environment.

Messages from the environment are coded as strings formed from a binary al-
phabet {0,1}. Each classifier is represented by a string formed from the alphabet
{1,0, #}. The symbol “#” is used as a “don’t care” symbol, i.e. it matches any
other possible value in the message corresponding field. Another important fea-
ture is the classifier specificity. It is related to the proportion of “don’t cares” in
the message string: the more “#” symbols a classifier has, the larger the number
of input messages it will be associated with. This measure may contribute to the
reduction of the size of the population of classifiers at the end of the evolutionary
process.

The aforementioned structure is a basis for all classifier systems here studied.
On the next subsections, two types of classifier systems will be detailed, focusing
on their peculiarities.

Analysing LCS in Reactive and Non-reactive Robotic Tasks 289

1: BEGGINING OF AN EPOCH
2: Receive message from the environment
3: Code message
4: Select classifiers that identify themselves with the message
5: Begin “Competition”:
6: Calculate bid of every competitor
7: Point out winner
8: Charge competitors and winner
9: Act on the environment

10: Receive message from environment
11: Code message
12: Reward or punish winner classifier
13: Charge tax of life of every individual
14: If it is not the end of an “Epoch”, return to Step 2
15: END OF AN EPOCH
16: Select most apt individuals from the population of classifiers
17: Apply crossover and mutation and generate descendants
18: Select weaker individuals in population
19: Insert descendants in population, replacing the weaker individuals
20: If it is not the end of the evolutionary process, go back to Step 1

Algorithm 1. LCS simplified algorithm (adapted from [17])

2.1 LCS

The classifier system originally proposed by Holland [4], named Learning Clas-
sifier System, is a methodology for creating and evolving rules, also known as
classifiers. In a decision-making system, these classifiers code alternative actions
designed to deal with the current state of the environment [18].

The implementation of the traditional LCS, was based on the work of [4], [17]
and [19]. A compact version of the main procedures is presented in Algorithm 1.
The system perceives the environment (Step 2). The message received allows the
definition of the classifiers that most identify themselves with the message (Steps
3 and 4). Usually, the Euclidean distance or the Hamming distance are used in
this process. Once defined the classifiers with higher degrees of matching, it
should be decided which of them will act on the environment. This competition
is done in the form of an auction (Equation 1), where each classifier presents
a value (a bid) determined as a function of its strength and its specificity. The
classifier that obtains the best bid will be chosen to act on the environment
(Step 9). It is important to understand the role of the Gaussian noise function.
This function is responsible for diversifying the choice of the winning classifier,
allowing classifiers with low strength to be sporadically selected.

After acting on the environment, the system updates the input information,
i.e. the message from the environment. Once coded (Step 11), this message will be
used to establish the reward or punishment of this classifier (Step 12), increasing
or decreasing the classifiers’ strength. In the end, all classifiers are taxed for
being on population (Step 13). This taxing is essential for replacing low-activated

290 R.C. Moioli, P.A. Vargas, and F.J. Von Zuben

Table 1. LCS and XCS Parameters Description

LCS Parameters XCS Parameters
n : half-life of classifier N : Maximum population size

Energy(t) : classifier energy at instant t β : learning rate(0 < β < 1)
TWinner : result of equation 1 if winner classifier;

0 otherwise
α, ε0, ν : precision control constants

(0 < α < 1, ε0 > 0, ν > 0)
Bid : result of equation 1 θmna : minimum number of actions in

[M]
TBid : tax for participating in competition γ : discount factor in multistep

problems
Rt : reward at instant t θGA : GA threshold
k0 : constant referred to the classifier energy

(0 < k0 < 1)
χ : crossover probability

k1 : constant referred to the non-specific
part of the classifier (0 < k1 < 1)

µ : mutation probability

k2 : constant referred to the specific
part of the classifier (0 < k2 < 1)

θdel : deletion threshold

Spec : specificity of a classifier δ : fraction of the mean fitness
of the population

SPow : influence of specificity of a classifier θsub : subsumption threshold
St : Classifier energy at instant t P# : don’t care probability
σ : standard deviation of the noise pI , εI , FI : initialization parameters
Nt : noise with normal distribution

classifiers by other new ones. Equation 2 describes the process of updating the
strength of the classifier.

Steps 16 to 19 correspond to the evolutionary part of the process, when more
active and adapted classifiers will have higher chances of being combined to
produce new classifiers. These new classifiers will replace low-activated classifiers
or classifiers with unsatisfactory performance. The parameters of the algorithm
are further explained in Table 1, which also includes parameters of the XCS to
be described in the following section.

Bid = k0 ∗ (k1 + k2 ∗ SpecSPow) ∗ St + σ ∗ Nt, (1)

Energy(t + 1) = (1 − 1
2

1
n

) ∗ Energy(t) + Rt − TWinner − TBid ∗ Bid, (2)

2.2 XCS

Wilson [8] proposed adaptations to the original classifier system, introducing
the XCS. This approach differs from the original LCS mainly in two aspects.
The first aspect is that the energy of each classifier is formed by prediction,
prediction error and fitness. The fitness of each classifier is a number calculated
by an inverse function of the prediction’s mean error, that is, the fitness is based
on the measure of how precise is a prediction. The second different aspect is
that the genetic algorithm is applied in niches defined by the set of activated
classifiers in each interaction, and not randomly anymore.

At each execution of the algorithm, a set M of classifiers that identify them-
selves with the actual environment is created. The initial population in XCS is
null, and the system uses a technique called covering. This technique creates

Analysing LCS in Reactive and Non-reactive Robotic Tasks 291

classifiers on demand, instead of generating them randomly at the beginning.
This approach prevents the proposition of classifiers with antecedent parts very
different from those that are found in the environment, hence evolution and
population gets simpler. When a new message from the environment is received,
if no classifier matches the message, a new classifier is then created, with the
antecedent equal to the environment reading. However don’t cares may be intro-
duced, with probability P#.

After performing covering, a vector containing the expected payment value
prediction for each action in the set M is formed based on fitness and on predic-
tion error of each classifier. The action set is then determined based on the values
of this vector. Then, it acts over environment. The way that the action selection
is done can vary, and different proposals were studied in literature [20]. In this
work the technique known as 50/50 exploration/exploitation is adopted. Basi-
cally, the first 50 interactions have the action randomly chosen, amongst those
present in M, role played by the Gaussian noise in the original LCS system.

The fitness updating of each classifier (see Equation 8) is made based on the
reward ρ, the prediction p, the relative prediction error of the payment received
(ε), taking into account the error of the other classifiers in the action set and
the maximum value previously calculated in the prediction vector (max(PA))
(Equations 3 to 8). The parameters of each classifier are referred using the dot
notation (cl.κ refers to the precision κ of each classifier), and their description
is given in Table 1.

p ← p + β(P − p), (3)

ε ← ε + β(|P − p| − ε), (4)

P ← ρ−1 + γ ∗ max(PA), (5)

κ =

{
1 if ε < ε0

α(ε0/ε)ν otherwise
(6)

κ
′
=

κ∑
cl∈[A] cl.κ

, (7)

F = F + β(κ
′ − F), (8)

The genetic algorithm is applied in the action set only. It starts when the
classifiers in the action set exceed a value θGA, which refers to the mean time
since the last participation of each classifier in the GA. For being responsible
for the discovery of new classifiers, it seems reasonable to apply the GA only
in exploratory search trials, and not in tuning trials (exploitation). In each GA
session, the new classifiers created are compared with the whole population. If
the new classifier is already present in population, its numerosity is increased.

292 R.C. Moioli, P.A. Vargas, and F.J. Von Zuben

Numerosity stands for the number of microclassifiers (numerosity equal to one)
that this macroclassifier represents. This approach allows the population to be
reduced and also to improve the processing speed [8].

One can notice that the basic structure of the LCS is preserved. However,
the classifier selection system and credit assignment have been changed. In this
sense, the classifiers are not punished or rewarded by their immediate action,
but by their performance in fulfilling the task. The fitness is no more determined
by the strength, but by the accuracy by which a prediction is made. This allows
the XCS to obtain good solutions in cases the LCS can not [8].

3 Related Work

This section is devoted to describe the most relevant works using LCS and its
derivatives in autonomous robot navigation.

Cliff and Ross [21] added memory mechanisms to the Zeroth-Level Classifier
System (ZCS)[22] and employed it in a series of woods tasks. Good results were
obtained, although optimal performance was rarely achieved. They found that
the system has stability difficulties when dealing with long action chains. The
authors suggested that this is mainly due to greedy classifier creation and con-
flicting overgeneral classifiers. It is mentioned that XCS and its accuracy-based
fitness could be used to alleviate this problems. They also made an attempt on
a close approximation to real robots. Again, long action chains appeared to be
a determinant factor in reducing performance.

Stolzmann [11] proposed an alternative framework, called Anticipatory Classi-
fier System (ACS), where each classifier has an anticipatory prediction of the con-
sequence of its action on an environment. This new architecture allows the system
to create an internal model of the environment in execution time. It was applied in
robot learning tasks and it was demonstrated that the robotic agent could perform
latent learning. Further work [23] combined action planning and latent learning
into two robotic tasks, achieving near optimal performance in few trials.

Dorigo and Colombetti [24] applied the LCS, exploring the behaviour-based
approach, to control a robot in simulated and real environments. The use of
classifier systems was motivated by the fact that the LCS presents three main
characteristics: parallelism, allowing a faster computation while adding flexibil-
ity to the design of the learning system; distributed architecture, allowing the
division of the task into subtasks, simpler to be solved; and behaviour evolution,
responsible for continuous adaptation in dynamic environments.

Katagami and Yamada [25] described an adaptive learning classifier system,
based on XCS, that could speed up learning in a mobile robot, and applied it
in a wall-following task and in a soccer game. It consisted of a human-robot
interaction system, where the human agent was able to interact with the rules
and directly teach the robot, improving the initial population set-up and adding
new rules at any time.

Bonarini [26] adapted the LCS to incorporate fuzzy rule-based models, pre-
senting an introductory investigation on coupling the fuzzy approach to the LCS

Analysing LCS in Reactive and Non-reactive Robotic Tasks 293

paradigm. In Bonarini [27], the author describes ELF, a fuzzy logic controller
able to evolve a population of fuzzy rules. It is a quite complex system, with many
similarities to some LCS algorithms, such as: the existence of a strength concept
(related to the performance of a rule), influenced by a reinforcement program; the
partition of rules into sub-populations, according to their matching with current
environment situation; and competition to perform an action. The author applies
the system to a set of experiments using a simulated animat and a real robot, pro-
ducing good results. Recent work [28] presented FIXCS (Fuzzy Implementation
of XCS), an extension to previous fuzzy-based LCS, inspired by XCS. The authors
report a longer learning time, balanced by the increase of robustness.

Gerard and Sigaud [29] presented the YACS (Yet Another Classifier System),
a system based on ACS, with the difference that in YACS the emphasis is on
classifiers which anticipate well rather in classifiers which propose an optimal
action. The system also combines dynamic programming algorithms and latent
learning. The authors report good results in maze tasks but stressing the need
for further investigations on generalization.

Hurst et al. [12] applied the ZCS classifier system [22] and introduced the
TCS classifier system to control a real robot in a simple obstacle avoidance task,
and also in a phototaxis task. Studley and Bull [3] coupled the TCS and the XCS
approaches to create the X-TCS classifier system, which presented good results
in a phototaxis task. Hurst and Bull [30] explores the use of constructivism-
inspired mechanisms within a Neural Learning Classifier System (NCS). In the
NCS, each rule is represented by an artificial neural network, and parameters are
under self-adaptation. Simulated mazes were adopted to analyse performance,
and experiments with a real robot were also performed. The TCS approach was
combined with the NCS as an attempt to overcome the difficulties in dealing
with real robots, such as time scale and ambiguity. The authors reported rea-
sonable performance and showed the viability of learning classifier systems in
real environment problems.

Webb et al. [31] implemented a XCS system to control a simulated Khepera
in a non-Markov environment, using an internal memory mechanism described
in [10]. Cazangi et al. [19] used a LCS to control a simulated and real robot in a
task where the robot should learn to capture some targets while avoiding obstacle
collisions. The results presented are very promising, evidencing the robustness
and adaptability of the system.

Vargas et al. [32] presented a hibrid system, named Clarinet (Classifier Im-
mune Network), which consists of an immuno-genetic network of classifiers. The
novel hybrid approach demonstrated good performance and robustness in a sim-
ulated robotic autonomous navigation problem.

Based on agent-independent and agent-dependent characteristics of maze en-
vironments, Zatuchna [33] describes an extensive analysis of these environments
by introducing new metrics for measuring complexity. Inspired by psychological
principles, the author also proposes a new learning approach, named Associative
Perception Learning (AgentP). This new model employs memory mechanisms
and has a state-action-state rule structure similar to ACS. It also has distance

294 R.C. Moioli, P.A. Vargas, and F.J. Von Zuben

based reward distribution, which reflects the minimal number of steps to the
goal state from the current state of the agent. In addition, the model does not
attempt to learn generalizations of states. It is shown that this new model is
able to successfully solve the majority of the maze problems proposed, including
mazes with aliasing states. There are a number of other works employing ACS
on robotics. For a further reference the reader should refer to [34].

Considering all the works published in the literature, since the first appearance
of the LCS paradigm, one can notice that there are relatively few contributions to
the field of robotics. One of the objectives of this work is to encourage the use of
classifier systems in autonomous robot navigation by revisiting some experiments
and also providing insights into rule evolution.

4 Description of the Platforms

This section is devoted to the description of the robot used and the simulator.
The robot is a Khepera II mini-robot. It has a diameter of 70mm and is 30mm
high, weighting around 80g. A robot with this reduced size allows the implemen-
tation of experiments in a small-size platform and with a low consumption of
energy. The robot gets its energy by wire or by its internal batteries, which have
an autonomy of 1 hour, approximately; it is sustained by two wheels, responsible
for its motion. The wheels have independent electric motors and, by applying
different speeds in the wheel, direction adjustments are obtained. The maximum
speed of the robot is 1 m/s, and the minimum is 0.08 m/s.

The robot has in its basic structure 8 infrared sensors that incorporate emit-
ters and receptors. The sensors measure the environment luminosity and the
obstacle distance. The range of the sensors, related to obstacles, is 10cm, max-
imum. The time of data acquisition of each sensor is 2.5ms and, at each 20ms,
a complete measure is done. The output of each measure is an analog value
converted to a 10-bit number.

Some external factors, like the presence of incandescent lamps, can cause
interference in the measurements of the distance sensors. This is due to the fact
that the same sensor is used for both tasks (distance and light detection). For
example, the distance sensor emits an infrared ray and calculates the distance
to the obstacle based on the time this ray took to left the emitter and return
to the receptor. However, if there is an incandescent lamp nearby, its luminosity
will interfere the received rays, changing the sensory reading. As the light sensor
uses the infrared range, we must apply lamps that are on the infrared zone.
Therefore, it is important to take care when developing an experiment. This
fact appears to have been noticed by the manufacturer, and the new Khepera
series, Khepera III, have distance sensors based on ultrasound, being immune to
light interference [35].

The simulations were carried out using a robot simulator developed by Perreta
and Gallagher [36]. It consists of a program that reproduces in a very reasonable
way the sensory behaviour of the real robot, which facilitates the migration from
the virtual environment to the real environment. This simulator has open code
and free license.

Analysing LCS in Reactive and Non-reactive Robotic Tasks 295

5 Experiments

This section presents experiments encompassing two distinct robot tasks. Both
consists of consolidated experiment proposals, previously described in literature.

LCS and XCS were first conceived for binary coding. This was the codification
adopted by the antecedent and the consequent of the classifiers here. Although
the discretization leads to sensitivity loss, it was observed in [12] and [31] that
it is possible to implement simulated and real experiments using this technique.

Therefore, for the antecedent coding, it was considered one left lateral sensor,
one frontal sensor and one right lateral sensor, leading to a string of size 3. Each
field is updated in the following way: if the sensory reading is superior to 50
(ranging from 0 to 1023), the field takes the value 1, and value 0 otherwise.
Likewise, the antecedent related to the luminosity sensor was coded considering
the value 1 if the reading was lower than 100 (ranging from 0 to 500) and 0
otherwise. The “#” symbol is also used. The robot actions were coded using 2
bits. The values “00” and “11” means straight ahead movement, “01” stands
for turning 90◦ right, and “10” indicates turning 90◦ left. Examples of possible
situations that the robot can face and its actions are depicted Table 2.

To avoid an action overload and iterations without an effective environment
change, it was adopted a strategy suggested in Hurst et al. [12]. This strategy
consists of letting the robot perform the same action until the environment has
changed. As a result, it promotes a decrease in the number of irrelevant messages
to the system and facilitates a faster evolution.

The simulation parameters were chosen based on previous studies in the lit-
erature: for the LCS [4], [16] and [17], and for the XCS [31], [20] and [37].

5.1 Experiment 1

The first experiment is carried out on a variation of the woods environment.
This is one of the most used environments for robot learning tasks [8,21,38,39].
It consists of a bidimensional environment formed by cells, where each cell can
contain an obstacle T (tree), an objective F (food), secondary objectives as en-
ergy level (E), and blank spaces (empty). The number and role of the secondary
objectives are in charge of the designer, depending on the complexity and the
behaviour to be examined. The robot is capable of detecting the eight neigh-
bor cells. Usually, the robot task in this scenario is to learn the shortest path to
the objective, avoiding collisions, and eventually accomplishing secondary objec-
tives, such as recharge. A number of trials are performed, positioning the robot

Table 2. Possible Situations

Distance Antecedent Light Antecedent Interpretation
000 000 open space, no light
001 100 obstacle at right, light at left
011 010 obstacle at right front, light at front
010 000 obstacle at front, no light
100 001 obstacle at left, light at right
101 000 obstacle at right and left, no light

296 R.C. Moioli, P.A. Vargas, and F.J. Von Zuben

(a) (b) (c)

Fig. 2. Results for Simulated Experiments, including the arena (a), the LCS trajectory
(b), and the XCS trajectory (c)

in an empty cell. If the robot reaches its objective, or if a number of iterations is
achieved (thus avoiding a large looping), a new trial is initiated. It is important
to highlight that this problem takes into consideration the obstacle avoidance
problem.

In the experiment developed here, the environment has no discretization, or
cells, thus the robot is in a continuous action space. See Figure 2(a). The light
represents the objective to be reached, and the robot must learn to reach it in a
minimum number of iterations.

LCS Results. The LCS was able to successfully solve the problem. The reward
function used in this experiment was: 2 points, if the robot moves forward with-
out collision; 10 points for every activated classifier, if it reaches the target; and
0 otherwise. The evolutionary process takes place either at each 40 iterations,
or at each target arrival, or if a collision happens. According to Equation 1, the
rule with highest bid is selected to act.

Table 3 illustrates the classifiers with more energy in the evolved population,
and Table 4 presents the simulation parameters. Notice that the sequence of
movements of the robot corresponds exactly to high energy classifiers. An in-
teresting aspect to be emphasized is the difference between the energy of the
classifiers. As the system does not have a long-term reward distribution mecha-
nism, like the one present in XCS, multiple behaviour sequences guide the robot
to reach the target, and not necessarily the shortest sequence is evolved. Thus,
some classifiers activate more than others. For instance, notice the first classi-
fier on Table 3, which points out light straight ahead. Every time this classifier
activates, the robot arrives at the target and a larger reward is given.

The system converged after 12 generations, creating 45 classifiers and under-
going 3 collisions (mean values). Figure 2(b) illustrates the trajectory.

Table 3. LCS Results for Experiment 1

Distance Light Consequent Energy
Antecedent Antecedent

0## 010 11 245.87
01# 000 10 109.98
001 000 11 81.29
100 000 11 64.64

Analysing LCS in Reactive and Non-reactive Robotic Tasks 297

Table 4. Parameters for Experiment 1

LCS XCS
Parameter Value Parameter Value

k0 0.1 θsub 20
k1 0.1 θGA 25
k2 0.01 θdel 25

SPow 3 θmna 3
σ 0.01 δ 0.1
n 200 N 400

Energy(0) 10 β 0.2
TBid 0.003 α 0.1

Mutation rate 0.05 µ 0.05
Crossover rate 0.8 χ 0.8
Probability of 0.1 P# 0.1
dont’t care ε0 10

Table 5. XCS Results for Experiment 1

Distance Light Action Prediction Prediction Fitness Numerosiy Experience
Antecedent Antecedent Error

0#0 000 10 265.00 6.50 1.00 2 95
#0# #00 00 410.00 239.81 0.62 5 272
000 010 11 1000.00 0.00 1.000 24 81
#00 #00 00 442.00 278.07 0.62 1 168

XCS Results. The XCS was able to successfully solve the problem. When
reaching the light, a reward of 1000 was given, and 0 otherwise. A trial consisted
of a maximum of 40 iterations, either if the robot reached the target, or if a
collision happened. The first 10 iterations of a trial was done by exploration,
and the next 10 iterations by exploitation. The genetic algorithm was applied
only in exploration time, or at the end of a trial.

As its fitness is based on accuracy, and not directly on reward, like occurs in
the LCS, the classifiers that have fitness near 1 are not necessarily the classi-
fiers that predict the largest reward. Notice that the reward is distributed over
population (fourth column in Table 5). This is intrinsic to the fitness updating
algorithm of the XCS, in which the last classifier to act before the objective is
accomplished has a higher reward prediction than the former classifiers, that
guided the system to the final state. As the choice of which classifier to act de-
pends on the prediction reward vector (PA), the system evolves to the minimum
path to the target, avoiding situations as those present in the LCS, where it is
not guaranteed that the system will always evolve to the shortest path. More
complex environments guides here to the same problem observed in LCS, as de-
scribed in [31]. It is important to notice, also, that the most adapted classifiers
have its numerosity greater than the others.

Table 5 shows some of the evolved classifiers, and Table 4 presents the
simulation parameters. The system converged in 17 trials, with 38 classifiers
created, with 9 collisions occurring (mean values). Figure 2(c) illustrates the
trajectory.

Real World Experiment. In order to validate the LCS and XCS performance
in real world applications, the controllers already described were transfered from

298 R.C. Moioli, P.A. Vargas, and F.J. Von Zuben

Fig. 3. Results for Real Experiments

simulation to a real environment. This is an important stage of the work once real
robot implementations are considered fundamental for the success of a control
technique.

As mentioned in section 4, the real robot has some differences compared to the
simulated robot. The distance and light sensors readings have to be adapted, as
well as the encoders that stands for wheel movement. Experiments are developed
in a dark environment due to light interference problems. The light source had
little spreading, aiming at not altering the sensors readings in every part of the
scenario. Figure 3 shows the real arena and the trajectories of the robot when
controlled by each system, LCS and XCS. The robot presented good performance
for the real experiment when to compared to the simulated experiment.

5.2 Experiment 2

In autonomous robot navigation there is a request for developing controllers that
are able to express non-reactive behaviour [40,41]. A non-reactive behaviour is
defined if the robot does not rely only on its sensory readings while accomplishing
a task, which is opposite to what happens when the behaviour is purely reactive.
It was verified in [31] that environments with various ambiguity states can not
be solved without the use of internal memory.

The experiment reported in this section is interesting because it shows the
memory capacity of the agent, one of the requirements to express more complex
behaviours. The experiment proposed is described in [40]. The task is illustrated
in Figure 4. Jakobi [40] evolved artificial neural networks as controllers, and here
the controllers will be implemented based on LCS and XCS.

It consists of a T-Maze environment. The robot begins to navigate at the first
corridor, passes by a light source, and then must decide for a side to turn at the
end of this first corridor. If it turns to the same side of the light source and gets to
the end of the second corridor, the maximum reward is given. That is, the control
system must remember, in some way, the side of the light source. This behaviour
involves the capability of moving without collisions in the environment as well
as deciding for one of the sides to turn at the end of the corridor. The robot
must also implement a procedure to remember which side of the first corridor
the light source was in order to perform the correct action at the end of the first
corridor.

Analysing LCS in Reactive and Non-reactive Robotic Tasks 299

(a) (b)

Fig. 4. Simulation Environment for Experiment 2. Adapted from [40].

In this experiment the robot interacts with the environment in a different
way from the previous experiment. As the task now is much more complex, the
causality of the whole system is crucial. By causality we mean that every time
the robot is at the same position in the scenario, taking the same action different
times would lead to the same external conditions (when one considers a static
scenario, which is the case here).

Because of continuous action and due to the inherent noise and
robot/environment inaccuracies the robot had to deal with a multi-objective
task (obstacle avoidance and goal finding) together with this causality problem.
When the task is relatively simple, the system can cope with that, but when
dealing with more complex tasks, having this kind of uncertainties can lead to
a malfunction of the system and also to a misinterpretation of the results. So
the environment was divided into cells. When acting, the robot can go forward
or turn 90◦, to the right or to the left. This mechanism is specially useful in the
XCS system, because of its difficulty in dealing with long sequences of actions.

LCS Results. The classifier system implemented does not use the long-term
reward transmission called bucket brigade, described in [4]. Alternatively, the
final bonus is equally distributed among the classifiers that were activated from
the beginning to the end of the trial. Riolo [42] investigated this mechanism and
concluded that it is able to perform similar to the bucket brigade.

The classifier antecedent structure is similar to the one described in Experi-
ment 1. The reward scheme and parameters were the same.

The first results were not adequate. The system was unable to adapt to differ-
ent positions of the light source. The controllers converged to a desired behaviour
only for one of the options of light source position, that is, sometimes the robot
always turned left, sometimes it always turned right. This can be explained by
the fact that there is an ambiguity at the end of the corridor. After passing the
first initial corridor and achieving the end of it, in front of the wall, the robot
can not remember in which side the light was located, the message from the
environment is simply “wall straight ahead, no light”. It became necessary to
use some kind of internal memory.

Some works using LCS with internal memory were studied [31,38,42], and it
was decided to use an extra bit in the antecedent, corresponding to the internal

300 R.C. Moioli, P.A. Vargas, and F.J. Von Zuben

Table 6. LCS Results for Experiment 2

Lamp at Left
Distance Light Internal Consequent Memory Energy

Antecedent Antecedent Memory Consequent
1## 0## 0 11 0 974.67
101 100 0 11 1 1092.74
101 000 1 11 1 1093.43
0#0 0#0 1 10 0 1094.12
001 000 0 11 1 1094.81

Lamp at Right
Distance Light Internal Consequent Memory Energy

Antecedent Antecedent Memory Consequent
1## 0## 0 11 0 974.67
1## 0## 0 11 0 974.67
1## 0## 0 11 0 974.67
010 000 0 01 0 998.61
100 000 1 11 0 999.30

memory of the robot, and an extra action, also internal, that can modify this bit
value. Thus, the classifier is chosen based on the message from the environment
and on the robot internal state. The robot can act over the environment and
also change its internal memory.

With these modifications, the system was able to find a solution. Table 6
illustrates the sequence of classifiers evolved in the problem. Notice that the
internal memory is widely used. The classifiers in Table 6 are presented in order
of operation along navigation, allowing to find out the way the system solved
the problem and represented the solution.

This experiment showed that the original LCS with an internal memory bit is
capable of dealing with tasks with long-term rewards, which is not so common
in the literature.

XCS Results. To cope with aliasing states, the XCS system was improved
with an internal memory mechanism, described in [10]. It consists of an extra
bit in the antecedent, which matches with an internal memory register, and a
internal action bit, which is capable of modifying the memory register status.
The internal action selection is always by exploitation. A trial consisted of a
maximum of 20 iterations, either if the robot reached the target, or if a collision
happened. At the beginning of each trial, the system randomly chooses if it will
be an exploration or an exploitation trial. The genetic algorithm was applied
only in exploration time, or at the end of a trial.

The XCS was able to solve the task successfully, though some considerations
have to be pointed out. Regularly, XCS receives the maximum reward (1000)
when reaching the goal, 0 otherwise. Following these assumptions, which are
adopted in almost every XCS work, the system was very unstable in the sense
that good solutions were hard to find. This can be explained by the long sequence
of actions to be performed in this problem, associated with the use of memory.
The robot must get to the goal to receive the reward, and then this reward is
distributed to the population by means of rule interaction. The robot achieves
the goal by the first time only by chance, there is no reward until that, so
action-selection via exploitation is useless. When the robot finally reaches the

Analysing LCS in Reactive and Non-reactive Robotic Tasks 301

Table 7. XCS Results for Experiment 2

Lamp at Left
Distance Light Internal Action Internal Prediction Prediction Fitness Numerosiy Experience

Antecedent Antecedent Memory Action Error
101 000 0 00 1 251.00 91.90 0.37 15.00 2151.00
101 1#0 1 00 0 180.00 4.18 1.00 17.00 524.00
101 000 0 00 1 230.00 94.16 0.32 15.00 2152.00
#10 0#0 1 10 0 506.00 4.67 1.00 20.00 465.00
0## 000 0 11 1 723.00 4.16 1.00 6.00 818.00
001 ##0 1 11 0 996.00 4.00 1.00 11.00 485.00

Lamp at Right
Distance Light Internal Action Internal Prediction Prediction Fitness Numerosiy Experience

Antecedent Antecedent Memory Action Error
101 000 0 00 1 259.00 105.18 0.38 15.00 2153.00
1#1 001 1 11 1 282.00 4.25 1.00 38.00 430.00
101 0#0 1 00 0 375.00 4.97 1.00 8.00 462.00
#1# 000 0 01 1 507.00 4.91 1.00 12.00 407.00
1#0 ##0 1 11 0 721.00 4.56 1.00 5.00 293.00
100 #00 0 00 1 996.000 4,00 1.00 19.00 644.00

final state, it receives the reward, but only the last rule to activate receive this
reward, all the other rules in the population have their reward prediction equal
to zero. Only when the system gets closer to the goal again, the reward can
be passed to the rule before the last rule is activated. This carries on until the
reward map to that task is completely formed. Just to illustrate the complexity
of this task, consider the work developed by Lanzi [38], who evolved an animat
using similar modifications to the XCS as the ones made in this work. Both the
environment and the actions to be performed were discrete. The task was not
the same as the one studied here, but in essence they are similar. In that task,
the optimum average performance of the animat was 2.9 steps to reach the goal
and the average random walk to the goal was approximately 110 steps. In this
work, the minimum number of steps to the goal is 6, therefore the random walk
may become much longer.

The solution adopted was to reward the robot in 1000 when it gets the goal,
and in 20 when it moves forward, as moving forward would be the most present
action in an evolved system (the robot only needs to turn at the end of the first
corridor), helping to reduce the exploration time. With this modification, the
robot could finish the task efficiently, and the system now operates as a temporal
difference learner. Table 7 gives an example of some rules of a successfully evolved
population. The first point to stress is the use of the memory register. It is
possible to see that the side of the light is determinant for the switching of
internal state. The fitness is high and prediction error is low for almost every
rule, except for the rules that are activated in more than one scenario location:
the number of steps to the goal is different, however the sensory input is the same,
leading to different reward predictions, which is responsible for the prediction
error. Also, although the objective of turning correctly at the end of the corridor
was accomplished, a compact population of maximum general rules was not
obtained. This could be due to short simulation time, as more general rules did
not have sufficient time to obtain high accuracy and fitness values.

302 R.C. Moioli, P.A. Vargas, and F.J. Von Zuben

6 Discussion and Future Work

The objective of this work was to establish an analysis of the performance of the
strength-based LCS and the accuracy-based XCS when applied to two distinct
robotic tasks. The first task is purely reactive, the second one is non-reactive.
This work presented rule evolution analysis, giving examples of evolved popula-
tions and its peculiarities for each of the two types of LCS studied. Future works
will include the same analysis of other LCS and XCS derivatives; in particular
the ACS model which has a number of related works reported in the literature.

Both systems were capable of solving the tasks successfully. However, the
strength-based LCS presented solutions in which the shortest sequence was not
always present. Moreover, rules presented over-specialization and overgeneral-
ization. This happens mainly because the main rules are reinforced by the most
frequent situations. Therefore, these rules continue to act in contexts in which
they are not adequate. In the robotics domain, these features are deleterious
to the performance, the speed of evolution, and the robustness of the system.
Nonetheless, as the reward comes immediately after an action, finding a good
solution sometimes is faster using LCS than using XCS. Moreover, the LCS sys-
tem, even presenting some limitations when compared to more recent proposals,
can lead to insightful ideas for future work, as it is the original framework from
which other classifier systems have been developed.

The autonomous controller for the mobile robot should deal with dynamic
and noisy environments. The XCS system, by constructive characteristics, prop-
agates rewards through the rules more recently used. To observe the evolution
to a given behaviour, a set of rules must be exposed to the same situation for
many times. Aiming at alleviating the computational burden, discretization of
environment and actions may be adopted. Webb et al. [31] uses a discretization
at the sensory level. This causes a reduction in the search space, helping the
evolution of the system. However, this discretization or any other method that
incorporates a priori knowledge reduces the level of autonomy of the system,
for this knowledge should have been produced only by the robot and its learn-
ing system. An alternative may be the work of Studley and Bull [3], which
incorporates the time to the reward function, creating the X-TCS, applying it
in continuous environments, with continuous actions.

Another important topic associated with the experiments is the design of the
reward function. The natural procedure would be to define different rewards for
each behaviour. This attitude is criticised by Kovacs [37], which demonstrates
that the reward function can compromise the generalization capability of the
system. Thus, an immediate question is: how to define a reward for each ac-
tion? And furthermore, how to define punishments for wrong actions in critic
behaviours (for instance, avoiding collision against an obstacle)? The alterna-
tive proposed by Kovacs [37] is to change the frequency at which each of these
situations should be encountered. In this sense, more relevant situations are en-
countered more frequently. Another option would be to separate the set of rules
into subsets, leaving sets that represent more relevant situations with a larger
number of rules. However, defining what is important or not is very challenging,

Analysing LCS in Reactive and Non-reactive Robotic Tasks 303

for the emergence of a complex behaviour can arise from a sequence of simple
processes that would be suppressed by these approaches. Unfortunately, this
problem has not been well explored in the literature, as yet.

Equally relevant is the analysis of the action selection methods. Some works
in the literature have attributed high relevance to the way action selection is de-
fined, supported by significant variation in the final performance of the system
[3,37,43]. The most analyzed techniques are roulette-wheel, tournament and a
mixture of exploration and exploitation. Once more, the literature lacks of con-
tributions in this area when applied to autonomous robot navigation.

The XCS is currently the most studied and used LCS [3,43]. It has evolu-
tion and learning mechanisms that prevent overgeneral rules with high fitness.
Another point that supports the use of XCS is its ability to distribute rewards
in sequential tasks and not considering its immediate performance, as occurs in
traditional LCS. This is implemented mainly by the credit assignment mecha-
nism inspired by Q-Learning. The consequence is that XCS is capable to map,
in a more balanced way, the action space of the problem. This aspect tends to
promote a better performance.

As a final remark, it is pertinent to once more highlight that the primary ob-
jective of this work is not to compare the performance of two different learning
classifier systems in robot autonomous navigation tasks, but to analyze their
performance. This was fulfilled by presenting drawbacks and positive aspects of
each one on each task, stressing the mechanisms of rule evolution (providing ex-
amples of evolved populations) and its numerous peculiarities. As a result of this
thorough qualitative analysis, it is envisaged that the understanding improved
of the general role that classifier systems may play in cognitive tasks, and more
specifically in autonomous navigation of mobile robots.

Acknowledgments

Moioli and Von Zuben would like to thank CAPES and CNPq for their finan-
cial support. Patricia A. Vargas was particularly supported by the Spatially
Embedded Complex Systems Engineering (SECSE) project, EPSRC grant no
EP/C51632X/1. The authors also would like to thank Renato Cazangi for his
valuable comments.

References

1. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)
2. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Tech-

nology of Self-Organizing Machines. Bradford Book (2004)
3. Studley, M., Bull, L.: X-TCS: Accuracy-based learning classifier system robotics.

In: Congress on Evolutionary Computation, pp. 2099–2106. IEEE, Los Alamitos
(2005)

4. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press (1975)

304 R.C. Moioli, P.A. Vargas, and F.J. Von Zuben

5. Holland, J.H.: Hidden Order. Addison-Wesley, Reading (1995)
6. Holland, J.H., Holyoak, K.J., Nisbett, R.E., Thagard, P.: Induction: Processes of

Inference, Learning, and Discovery. MIT Press, Cambridge (1986)
7. Holmes, J.H., Lanzi, P.L., Stolzmann, W., Wilson, S.: Learning classifier systems:

new models, successful applications (2000)
8. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3,

149–175 (1995)
9. Wilson, S.W.: Classifiers that approximate functions. Natural Computing: an in-

ternational journal 1(2-3), 211–234 (2002)
10. Lanzi, P.L., Wilson, S.W.: Toward optimal classifier system performance in non-

markov environments. Evolutionary Computation 8(4), 393–418 (2000)
11. Stolzmann, W.: Learning classifier systems using the cognitive mechanism of an-

ticipatory behavioural control. In: Proceedings of the First European Workshop on
Cognitive Modelling, pp. 82–89 (1996)

12. Hurst, J., Bull, L., Melhuish, C.: TCS learning classifier system controller on a real
robot. In: Proceedings of the 7th International Conference on Parallel Problem
Solving from Nature (2002)

13. Bull, L.: Applications of Learning Classifier Systems. Springer, Heidelberg (2004)
14. Vargas, P.A., Lyra Filho, C., von Zuben, F.J.: Application of learning classifier

systems to the on line reconfiguration of electric power distribution networks. Ap-
plications of Learning Classifier Systems 150, 260–275 (2004)

15. Armano, G.: NXCS experts for financial time series forecasting. In: Bull, L. (ed.)
Applications of Learning Classifier Systems (2004)

16. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison Wesley, Inc., Reading (1989)

17. Vargas, P.A.: Classifier systems for loss reduction in electric power distribution
networks (in portuguese). Master’s thesis, School of Electrical and Computer En-
gineering, Unicamp, Brazil (2000)

18. Booker, L.B., Goldberg, D.E., Holland, J.H.: Classifier systems and genetic algo-
rithms. Artificial Intelligence 40, 235–282 (1989)

19. Cazangi, R.R., Von Zuben, F.J., Figueiredo, M.: A classifier system in real applica-
tions for robot navigation. In: The IEEE Congress on Evolutionary Computation,
Canberra, Australia, vol. 1, pp. 574–580 (2003)

20. Butz, M.V., Wilson, S.W.: An algorithmic description of XCS. In: Lanzi, P.L.,
Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp.
253–272. Springer, Heidelberg (2001)

21. Cliff, D., Ross, S.: Adding temporary memory to ZCS. Adaptive Behavior (1995)
22. Wilson, S.W.: ZCS: A zeroth level classifier system. Evolutionary Computa-

tion 2(1), 1–18 (1994)
23. Stolzmann, W., Butz, M.V.: Latent learning and action planning in robots with

anticipatory classifier systems. Learning Classifier Systems (1999)
24. Dorigo, M., Colombetti, M.: Robot Shaping: An Experiment in Behavior Engineer-

ing. MIT Press, Cambridge (1997)
25. Katagami, D., Yamada, S.: Interactive classifier system for real robot learning.

In: Proceedings of the 2000 IEEE International Workshop on Robot and Human
Interactive Communnication, Osaka, Japan (2000)

26. Bonarini, A.: An introduction to learning fuzzy classifier systems. In: Lanzi, P.L.,
Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp.
83–106. Springer, Heidelberg (2000)

27. Bonarini, A.: Fuzzy modelling: Paradigms and practice. In: Pedrycz, W. (ed.) Fuzzy
Modelling: Paradigms and Practice. Kluwer Academic Press, Norwell (1996)

Analysing LCS in Reactive and Non-reactive Robotic Tasks 305

28. Bonarini, A., Matteucc, M.: Fixcs: A fuzzy implementation of XCS. In: IEEE
International Fuzzy Systems Conference, FUZZ-IEEE 2007 (2007)

29. Gerard, P., Sigaud, O.: YACS: Combining dynamic programming with general-
ization in classifier systems. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.)
IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 259–266. Springer, Heidelberg (2001)

30. Hurst, J., Bull, L.: A neural learning classifier system with self-adaptive construc-
tivism for mobile robot control. Artif. Life 12(3), 353–380 (2006)

31. Webb, E., Hart, E., Ross, P., Lawson, A.: Controlling a simulated khepera with an
XCS classifier system with memory. In: Banzhaf, W., Ziegler, J., Christaller, T.,
Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 885–892.
Springer, Heidelberg (2003)

32. Vargas, P.A., de Castro, L.N., Michelan, R., Von Zuben, F.J.: An immune learning
classifier network for autonomous navigation. In: Timmis, J., Bentley, P.J., Hart,
E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 69–80. Springer, Heidelberg (2003)

33. Zatuchna, Z.V.: AgentP: a Learning Classifier System with Associative Perception
in Maze Environments. PhD thesis, School of Computing Sciences, University of
East Anglia (2005)

34. Kovacs, T.: A learning classifier systems bibliography (2002),
http://www.cs.bris.ac.uk/∼kovacs/lcs/search.html

35. S. A. KTEAM (2007), http://www.k-team.com
36. Perreta, S.J., Gallagher, J.C.: The Java Khepera simulator from the wright state

university, Ohio, USA (2004)
37. Kovacs, T.: Strength or Accuracy: Credit Assignment in Learning Classifier Sys-

tems. Springer, Heidelberg (2004)
38. Lanzi, P.L.: An analysis of the memory mechanism of XCSM. In: Proceedings of

the Third Annual Conference on Genetic Programming (1998)
39. Lanzi, P.L., Wilson, S.W.: Optimal classifier system performance in non-markov

environments. Technical report, Politecnico de Milano (1999)
40. Jakobi, N.: Minimal Simulations for Evolutionary Robotics. PhD thesis, University

of Sussex (1998)
41. Husbands, P.: Evolving robot behaviours with diffusing gas networks. In: Evolu-

tionary Robotics: First European Workshop, EvoRobot 1998 (1998)
42. Riolo, R.L.: The emergence of default hierarchies in learning classifier systems. In:

Proceedings of the Third Congress on Genetic Algorithms (1989)
43. Butz, M.V., Goldberg, D.E., Tharakunnel, K.: Analysis and improvement of fit-

ness exploitation in XCS: Bounding models, tournament selection, and bilateral
accuracy. Evolutionary Computation 11(3), 239–277 (2003)

http://www.cs.bris.ac.uk/~kovacs/lcs/search.html
http://www.k-team.com

Author Index

Bacardit, Jaume 1, 255
Barry, Alwyn 77, 117
Bernadó-Mansilla, Ester 1, 57, 96, 235
Browne, Will 46
Bull, Larry 154
Butz, Martin V. 1

Casillas, Jorge 57

Drugowitsch, Jan 77, 117

Goldberg, David E. 189, 235

Ioannides, Charalambos 46

Jiang, Max Kun 136

Krasnogor, Natalio 255
Kurahashi, Setsuya 269

Lanzi, Pier Luca 22, 117, 218
Lima, Cláudio F. 189
Llorà, Xavier 189

Lobo, Fernando G. 189
Loiacono, Daniele 117, 218

Mellor, Drew 169
Moioli, Renan C. 286

Orriols-Puig, Albert 57, 96, 235

Rocca, Stefano 22

Sastry, Kumara 22, 189, 235
Smith, Robert Elliott 136
Solari, Stefania 22

Terano, Takao 269

Vargas, Patricia A. 286
Von Zuben, Fernando J. 286

Wilson, Stewart W. 206

Zanini, Matteo 218

	Title Page
	Preface
	Organization
	Table of Contents
	Introduction
	Learning Classifier Systems: Looking Back and Glimpsing Ahead
	Introduction
	LCSs: Types and Approaches
	Basic LCS Components
	Michigan vs. Pittsburgh LCSs

	Recent Advances in LCSs
	Condition Structure
	Action Structures
	Prediction Structure
	Classifier Competition
	Rule Structure Evolution Mechanisms
	Theory and Robustness
	Interpretability and Compaction
	Efficiency Enhancement Techniques
	Applications
	Cognitive Systems

	Challenges and Opportunities
	Problem Structure and LCS Modules
	LCS Cookbook
	Data Mining

	Conclusions
	References

	Knowledge Representations
	Analysis of Population Evolution in Classifier Systems Using Symbolic Representations
	Introduction
	Subexpressions Extraction
	The Canonical Form
	Population Simplification
	Extraction of Subexpressions

	Subexpressions Counting
	Analysis of Evolving Populations
	Experimental Validation
	Experiment 1: Sum of Two Variables
	Experiment 2: Multiplication of Two Variables

	Summary
	References

	Investigating Scaling of an Abstracted LCS Utilising Ternary and S-Expression Alphabets
	Introduction
	Background
	Design of the S-XCS System
	Results
	Discussion
	Conclusions
	References

	Evolving Fuzzy Rules with UCS: Preliminary Results
	Introduction
	Description of Fuzzy-UCS
	Representation
	Performance Component
	Parameters Update
	Discovery Component
	Fuzzy-UCS in Test Mode

	Experimentation
	Methodology
	Results

	Conclusions and Further Work
	References

	Analysis of the System
	A Principled Foundation for LCS
	Introduction
	Assembling an LCS Model
	A Bird’s Eye View of the LCS Model
	Mixtures of Experts
	LCS as Generalised Mixtures of Experts
	Training the Classifiers Independently

	Finding a Good Set of Classifiers
	Applying Bayesian Model Selection
	A Bayesian LCS Model
	Evaluating Posterior and Model Evidence
	Summarising the Approach

	But..., Does it Work?
	Model Structure Search
	Approximating a Generated Function
	Variable Measurement Noise

	Summary and Conclusions
	References

	Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS
	Introduction
	XCSinaNutshell
	Description of UCS
	UCS Components
	Why Should We Not Share Fitness?

	XCS and UCS in Binary-Input Problems
	Methodology
	Binary-Class Problem: Parity
	Multiclass Problem: Decoder
	Imbalanced Binary-Class Problem: Imbalanced Multiplexer
	Imbalanced Multiclass Problem: Position
	Noisy Problem: Multiplexer with Alternating Noise

	Summing Up
	Conclusions
	References

	Mechanisms
	Analysis and Improvements of the Classifier Error Estimate in XCSF
	Introduction
	The XCSF Classifier System
	Squared Error or Absolute Error?
	Re-deriving the XCSF Weight Vector and Error Update
	Estimating the Root Mean Squared Error

	Improving the Error Estimate
	The Bayes Linear Analysis
	A Sample-Based Implementation and Its Relation to Least Squares
	Recursive Least Squares and Error Tracking

	Experimental Design
	Experimental Results
	Single Classifier Error
	Analysis of Generalization
	Classifier Error and Action-Set Subsumption

	Conclusions
	References

	A Learning Classifier System with Mutual-Information-Based Fitness
	Introduction
	LCSs and CCNs: An Analogy
	Parameter Versus Structural Learning
	CCN and Structural Learning
	CCN and XCS
	Supervised Versus Reinforcement Learning

	The Role of Mutual Information in MILCS
	The MILCS Process
	Results
	Multiplexer Problems

	Scalability
	Explanatory Power
	Visualization of Explanatory Power
	Coordination Number Problem

	Final Comments and Future Directions
	References

	On Lookahead and Latent Learning in Simple LCS
	Introduction
	MCSL: A Simple Anticipatory Classifier System
	A Simple Model of MCSL
	MCSL in T-Mazes
	Self-adaptive Mutation
	Conclusions
	References

	A Learning Classifier System Approach to Relational Reinforcement Learning
	Introduction
	System Design
	Representation
	Matching
	Rule Discovery

	Evaluation
	Comparison to ILP Algorithms
	Relational Reinforcement Learning
	Learning Scalable Policies

	Conclusion
	References

	Linkage Learning, Rule Representation, and the {\large χ}-Ary Extended Compact Classifier System
	Introduction
	The {\lowercase{{\large χ}-Ary}} Extended Compact Classifier System
	Restricted Tournament Replacement

	Results
	Substructure in the Multiplexer
	Getting a Set of Rules

	Probabilistic Models and Knowledge Representations
	Gene Expression Programming and the Karva Language
	Building Probabilistic Models for the Karva Language
	Rule Representation, Probabilistic Model Building, and Population Sizes

	Conclusions
	References

	New Directions
	Classifier Conditions Using Gene Expression Programming
	Introduction
	Limits of Traditional Conditions
	Gene Expression Programming in XCSF
	Some Basics of GEP
	XCSF-GEP

	An Experiment
	Setup
	Results

	Discussion and Conclusion
	References

	Evolving Classifiers Ensembles with Heterogeneous Predictors
	Introduction
	The XCSF Classifier System
	Classifiers
	Performance Component
	Reinforcement Component
	Discovery Component

	XCSF with Heterogeneous Predictors
	Covering Operator
	Discovery Component
	Predictor Ensembles

	XCSFHP for Function Approximation
	Experiments with Polynomial Predictors
	Experiments with Constant, Linear and Neural Predictors

	XCSFHPonMultistepProblems
	2D Continuous Gridworld
	2D Continuous Gridworld with Puddles

	Conclusions
	References

	Substructural Surrogates for Learning Decomposable Classification Problems
	Introduction
	Methodology for Learning χ-Ary Input Problems
	Structural Model Layer
	Surrogate Model Layer
	Classification Model Layer

	Implementing the Methodology: gESMC
	Test Problems
	Lower Level of the Hierarchy
	Higher Level of the Hierarchy

	Results
	Experimental Methodology
	Results with 2-Bit Low Order Blocks
	Results Increasing the Low Level Block Size

	Discussion
	Lack of Guidance from Lower-Order Substructures
	Non-linearities in the High Order Functions
	Creating Structural Models with Overlapping Substructures

	Summary and Conclusions
	References

	Empirical Evaluation of Ensemble Techniques for a Pittsburgh Learning Classifier System
	Introduction
	Related Work
	The GAssist Learning Classifier System
	Ensembles for Consensus Prediction
	Empirical Evaluation

	Ensembles for Ordinal Classification
	Motivation
	Ensemble Definition
	Empirical Evaluation of the Hierarchical Ensemble

	Conclusions and Further Work
	References

	Applications
	Technology Extraction of Expert Operator Skills from Process Time Series Data
	Introduction
	Research Objective
	A Target Plant
	Problem Description

	Principles of LCS with MDL
	MDL Criteria
	Improvement Rate Based MDL Criteria
	Learning Classifier System
	Comparison between MDL and iMDL

	Experiments
	The Response Model
	Heuristic Search for Operation Rules

	Comparison with Conventional Methods
	Extracting Knowledge of Workflow from Workers
	Detection of Outliers

	Conclusion
	References

	Analysing Learning Classifier Systems in Reactive and Non-reactive Robotic Tasks
	Introduction
	Learning Classifier Systems Fundamentals
	LCS
	XCS

	Related Work
	Description of the Platforms
	Experiments
	Experiment 1
	Experiment 2

	Discussion and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

